1
|
Minasian V, Nazari M. The association between type 1 diabetes and exercise/physical activity and prolongation of the honeymoon phase in patients. Life Sci 2023; 332:122114. [PMID: 37739162 DOI: 10.1016/j.lfs.2023.122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
In type 1 diabetes (T1D), pancreatic beta cells are destroyed by the immune system, causing chronic hyperglycemia and micro and macrovascular complications. However, some people experience a 'honeymoon' phase (or partial remission) after being diagnosed with type 1 diabetes. During this phase, a substantial amount of insulin is still produced by the pancreas, helping to reduce blood sugar levels and the requirement for external insulin. The clinical significance of this phase lies in the potential for pharmacological and non-pharmacological interventions during this time frame to either slow down or arrest beta-cell destruction. Clearly, we need to continue researching novel therapies like immunomodulatory agents, but we also need to look at potentially effective therapies with acceptable side effects that can serve as a complement to the medicines currently being studied. Physical activity and exercise, regardless of its type, is one of the factors its impact on the control of diabetes is being investigated and promising results have been achieved. Although there are still limited reports in this regard, there is some evidence to suggest that regular physical exercise could prolong the honeymoon period in both adults and children. In this review, having described the immune base of type 1 diabetes, we outline the benefits of exercise on the general health of individuals with T1D. Moreover, we centered on the honeymoon and current evidence suggesting the effects of physical activity and exercise on this phase duration.
Collapse
Affiliation(s)
- Vazgen Minasian
- Faculty of Sport Sciences, Department of Exercise physiology, University of Isfahan, Isfahan, Iran.
| | - Maryam Nazari
- Faculty of Sport Sciences, Department of Exercise physiology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
2
|
Pan X, Meng J, Xu L, Chang M, Feng C, Geng X, Cheng Y, Guo D, Liu R, Wang Z, Li D, Tan L. In-depth investigation of the hypoglycemic mechanism of Morchella importuna polysaccharide via metabonomics combined with 16S rRNA sequencing. Int J Biol Macromol 2022; 220:659-670. [PMID: 35995180 DOI: 10.1016/j.ijbiomac.2022.08.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Increasing evidence indicates that type 2 diabetes mellitus (T2DM) is closely related to intestinal bacteria disorders and abnormal hepatic metabolism. Morchella importuna polysaccharide (MIP) shows excellent hypoglycemic activity in vitro. However, the hypoglycemic effect and mechanism of MIP in vivo have yet to be investigated. In this study, the blood glucose, blood lipid and insulin resistance of diabetic mice after MIP intervention were measured to evaluate its hypoglycemic effect. Then, the microbiome and metabolomics were combined to explore the hypoglycemic mechanism of MIP. Results indicated that high dose MIP (400 mg/kg) had significant hypoglycemic effect. Furthermore, MIP could reverse diabetes-induced intestinal disorder by increasing the abundance of Akkermansia, Blautia, Dubosiella, and Lachnospiraceae, as well as decreasing the abundance of Helicobacteraceae. Besides, the hepatic metabolites and complex network systems formed by multiple metabolic pathways were regulated after MIP treatment. Notably, a new biomarker of diabetes (N-P-coumaroyl spermidine) was discovered in this study. Moreover, the significant association between intestinal bacteria and hepatic metabolites was determined by correlations analysis, which in turn confirmed MIP alleviated T2DM via the gut-liver axis. Therefore, these findings elucidated in-depth hypoglycemic mechanisms of MIP and provided a new biomarker for the prevention of diabetes.
Collapse
Affiliation(s)
- Xu Pan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China.
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China.
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhichao Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Dongjie Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Lirui Tan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
3
|
Delmis J, Ivanisevic M. Awakened Beta-Cell Function Decreases the Risk of Hypoglycemia in Pregnant Women with Type 1 Diabetes Mellitus. J Clin Med 2022; 11:jcm11041050. [PMID: 35207323 PMCID: PMC8879080 DOI: 10.3390/jcm11041050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes in pregnancy creates many problems for both the mother and child. Pregnant women with type 1 diabetes experience more frequent hypoglycemic and hyperglycemic episodes. This study aimed to determine the risk of clinically significant biochemical hypoglycemia (CSBH) by HbA1c, fasting C-peptide, mean plasma glucose (PG), and insulin dose in pregnant women type 1 diabetes mellitus according to each trimester of the pregnancy. Methods. We conducted a prospective observational study of 84 pregnant women with type 1 diabetes in an academic hospital. To present the hypoglycemia, we divided the participants into two groups: those who did not have clinically significant biochemical hypoglycemia (CSBH−; n = 30) and those who had clinically significant biochemical hypoglycemia (CSBH+; n = 54). Results. In the first, second, and third trimesters, the duration of T1DM, fasting C-peptide, and mean glucose concentration was inversely associated with CSBH. Conclusions. Insulin overdose is the most common risk factor for hypoglycemia. In pregnant women with type 1 diabetes with elevated fasting C-peptide levels, the insulin dose should be diminished to reduce the risk of hypoglycemia.
Collapse
|