1
|
Ramireddy AR, Behara DK. QbD Based Formulation Development and Optimisation of Ozenoxacin Topical Nano-Emulgel and Efficacy Evaluation Using Impetigo Mice Model. AAPS PharmSciTech 2024; 25:90. [PMID: 38649513 DOI: 10.1208/s12249-024-02805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
To formulate and optimize Ozenoxacin nano-emulsion using Quality by Design (QbD) concept by means of Box-Behnken Design (BBD) and converting it to a gel to form Ozenoxacin nano-emulgel followed by physico-chemical, in-vitro, ex-vivo and in-vivo evaluation. This study demonstrates the application of QbD methodology for the development and optimization of an effective topical nanoemulgel formulation for the treatment of Impetigo focusing on the selection of appropriate excipients, optimization of formulation and process variables, and characterization of critical quality attributes. BBD was used to study the effect of "% of oil, % of Smix and homogenization speed" on critical quality attributes "globule size and % entrapment efficiency" for the optimisation of Ozenoxacin Nano-emulsion. Ozenoxacin loaded nano-emulgel was characterized for "description, identification, pH, specific gravity, amplitude sweep, viscosity, assay, organic impurities, antimicrobial effectiveness testing, in-vitro release testing, ex-vivo permeation testing, skin retention and in-vivo anti-bacterial activity". In-vitro release and ex-vivo permeation, skin retention and in-vivo anti-bacterial activity were found to be significantly (p < 0.01) higher for the nano-emulgel formulation compared to the innovator formulation (OZANEX™). Antimicrobial effectiveness testing was performed and found that even at 70% label claim of benzoic acid is effective to inhibit microbial growth in the drug product. The systematic application of QbD principles facilitated the successful development and optimization of a Ozenoxacin Nano-Emulsion. Optimised Ozenoxacin Nano-Emulgel can be considered as an effective alternative and found to be stable at least for 6 months at 40 °C / 75% RH and 30 °C / 75% RH.
Collapse
Affiliation(s)
- Amarnath Reddy Ramireddy
- Department of Pharmaceutical Sciences, Jawaharlal Nehru Technological University Anantapur (JNTUA), Ananthapuramu, Andhra Pradesh, 515002, India.
| | - Dilip Kumar Behara
- Chemical Engineering, JNTUA College of Engineering (Autonomous), Jawaharlal Nehru Technological University Anantapur (JNTUA), Ananthapuramu, Andhra Pradesh, 515002, India
| |
Collapse
|
2
|
Ramireddy AR, Behara DK. Formulation and optimisation of Ozenoxacin topical nano-emulgel including a comprehensive methodology to qualify and validate the critical parameters of an in-vitro release test method and ex-vivo permeation test. Drug Dev Ind Pharm 2024; 50:320-330. [PMID: 38459688 DOI: 10.1080/03639045.2024.2327466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The purpose of this study was to formulate, optimize Ozenoxacin topical nano-emulsion using factorial design followed by to prepare and evaluate nano-emulgel using validated in-vitro release testing (IVRT) technique for determination of Ozenoxacin release rate along with ex-vivo permeation testing (EVPT).Significance: Nano-emulgel is a proven delivery system for poorly soluble substances works by enhancing the solubility and bioavailability. Factorial design provides a systematic and efficient means to study the effect of multiple factors on responses. IVRT is an USP compendia technique utilized for performance analysis of semi-solid formulations. METHODS Nano-emulsion formulation optimization was done with factorial design, evaluated for globule size and % entrapment efficiency (EE). Nano-emulgels were characterized for assay, organic impurities, rheological behavior, IVRT, EVPT, and skin retention studies. IVRT validation was executed using vertical diffusion cells (VDCs). RESULTS Ozenoxacin nano-emulsion was optimized with 1:1 ratio of Oil: Smix, 3:1 ratio of Surfactant:Co-Surfactant, and 15000 RPM of homogenization speed which resulted 414.6 ± 5.2 nm globule size and 92.8 ± 2.1% entrapment efficiency. Results confirmed that IVRT and Reversed Phase - High Performance Liquid Chromatographic techniques were validated as per regulatory guidelines. In-vitro, ex-vivo drug release, and skin retention from the optimized nano-emulgel formulation was comparatively higher (∼1.5 times) than that from the innovator (OZANEXTM) formulation. CONCLUSIONS Based on these results, Ozenoxacin nano-emulgel can be considered an effective alternative and was found to be stable at 40 °C/75% RH and 30 °C/75% RH storage condition for 6 months.
Collapse
Affiliation(s)
- Amarnath Reddy Ramireddy
- Department of Pharmaceutical Sciences, Jawaharlal Nehru Technological University Anantapur (JNTUA), Ananthapuramu, India
| | - Dilip Kumar Behara
- Chemical Engineering, JNTUA College of Engineering (Autonomous), Jawaharlal Nehru Technological University Anantapur (JNTUA), Ananthapuramu, India
| |
Collapse
|
3
|
Alissa M, Hjazi A, Abusalim GS, Aloraini GS, Alghamdi SA, Alharthi NS, Rizg WY, Hosny KM, Binmadi N. Utilization of nanotechnology and experimental design in the development and optimization of a posaconazole‒calendula oil nanoemulgel for the treatment of mouth disorders. Front Pharmacol 2024; 15:1347551. [PMID: 38434704 PMCID: PMC10905964 DOI: 10.3389/fphar.2024.1347551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction: Essential oil‒based nanoemulsions (NEs) are the subjects of extensive investigation due to their potential to address a variety of oral health issues. NEs are delivery systems that improve lipid medicine solubility and distribution to intended sites. The goal of the current study was to create and enhance a self-nanoemulsifying drug delivery paradigm based on calendula oil (CO) and decorated with chitosan (CS) that could deliver posaconazole (PSZ) for the treatment of gingivitis. Method: Employing a response-surface Box‒Behnken design, PSZ-CO-CS NEs were created with varying amounts of PSZ (10, 15, and 20 mg), percentages of CO (6%, 12%, and 18%), and percentages of CS (0.5%, 1.5%, and 2.5%). Results and conclusion: The optimized formulation resulted in a 22-mm bacterial growth suppression zone, 25-mm fungal growth inhibition zone, droplet sizes of 110 nm, and a viscosity of 750 centipoise (cP). Using the appropriate design, the ideal formulation was produced; it contained 20 mg of PSZ, 18% of CO, and 1.35% of CS. Furthermore, the optimal formulation had a more controlled drug release, larger inhibition zones of bacterial and fungal growth, and desirable rheologic properties. Additionally, the optimized formulation substantially lowered the ulcer index in rats when tested against other formulations. Thus, this investigation showed that PSZ-CO-CS NEs could provide efficient protection against microbially induced gingivitis.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghadah S. Abusalim
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghfren S. Aloraini
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A. Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nahed S. Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nada Binmadi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Sindi AM, Rizg WY, Khan MK, Alkhalidi HM, Alharbi WS, Sabei FY, Alfayez E, Alkharobi H, Korayem M, Majrashi M, Alharbi M, Alissa M, Safhi AY, Jali AM, Hosny KM. Tailoring and optimization of a honey-based nanoemulgel loaded with an itraconazole-thyme oil nanoemulsion for oral candidiasis. Drug Deliv 2023; 30:2173337. [PMID: 36708105 PMCID: PMC9888461 DOI: 10.1080/10717544.2023.2173337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The use of essential oil-based nanoemulsions (NEs) has been the subject of extensive research on a variety of conditions affecting the oral cavity. NEs are delivery methods that improve the solubility and distribution of lipid medicines to the intended areas. Because of their antibacterial and antifungal properties, itraconazole and thyme oil-based self-nanoemulsifying drug delivery systems (ItZ-ThO-SNEDDS) were created to protect oral health against oral microorganisms. The ItZ-ThO-SNEDDS were created utilizing an extreme verices mixture design, and varying concentrations of ThO (10% and 25%), labrasol (40% and 70%), and transcutol (20% and 40%) were used. The ItZ-ThO-SNEDDS had droplet sizes of less than 250 nm, a drug-loading efficiency of up to 64%, and a fungal growth inhibition zone of up to 20 mm. The accepted design was used to obtain the ideal formulation, which contained ThO in the amount of 0.18 g/ml, labrasol 0.62 g/ml, and transcutol 0.2 g/ml. The best ItZ-ThO-SNEDDS formulation was incorporated into a honey-based gel, which demonstrated improved release of ItZ in vitro and improved transbuccal permeation ex vivo. In addition, when compared with various formulations tested in rats, the optimized loaded emulgel decreased the ulcer index. This study therefore demonstrated that the ItZ-ThO-SNEDDS could offer an effective defense against oral diseases caused by microbial infections.
Collapse
Affiliation(s)
- Amal M. Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Muhammad Khalid Khan
- Department of Biochemical Materials, Beautsway commercial foundation, Cairo, Egypt
| | - Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan45142, Saudi Arabia
| | - Eman Alfayez
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanaa Alkharobi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Korayem
- Preventive Dental Sciences Department, Faculty of Dentistry, Albaha University, Albaha, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah, 23890, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah21589, Saudi Arabia,CONTACT Khaled M. Hosny Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Abdulaal WH, Hosny KM, Alhakamy NA, Bakhaidar RB, Almuhanna Y, Sabei FY, Alissa M, Majrashi M, Alamoudi JA, Hazzazi MS, Jafer A, Khallaf RA. Fabrication, assessment, and optimization of alendronate sodium nanoemulsion-based injectable in-situ gel formulation for management of osteoporosis. Drug Deliv 2023; 30:2164094. [PMID: 36588399 PMCID: PMC9809409 DOI: 10.1080/10717544.2022.2164094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Low bone mass, degeneration of bone tissue, and disruption of bone microarchitecture are all symptoms of the disease osteoporosis, which can decrease bone strength and increase the risk of fractures. The main objective of the current study was to use a phospholipid-based phase separation in-situ gel (PPSG) in combination with an alendronate sodium nanoemulsion (ALS-NE) to help prevent bone resorption in rats. The effect of factors such as concentrations of the ALS aqueous solution, surfactant Plurol Oleique CC 497, and Maisine CC oil on nanoemulsion characteristics such as stability index and globular size was investigated using an l-optimal coordinate exchange statistical design. Injectable PPSG with the best nanoemulsion formulation was tested for viscosity, gel strength, water absorption, and in-vitro ALS release. ALS retention in the rats' muscles was measured after 30 days. The droplet size and stability index of the optimal nanoemulsion were 90 ± 2.0 nm and 85 ± 1.9%, respectively. When mixed with water, the optimal ALS-NE-loaded PPSG became viscous and achieved 36 seconds of gel strength, which was adequate for an injectable in-situ formulation. In comparison with the ALS solution-loaded in-situ gel, the newly created optimal ALS-NE-loaded PPSG produced the sustained and regulated release of ALS; hence, a higher percentage of ALS remained in rats' muscles after 30 days. PPSG that has been loaded with an ALS-NE may therefore be a more auspicious, productive, and effective platform for osteoporosis treatment than conventional oral forms.
Collapse
Affiliation(s)
- Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia,Center of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia,CONTACT Khaled M. Hosny Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana B. Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yasir Almuhanna
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohannad S. Hazzazi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Jafer
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A. Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Sindi AM, Hosny KM, Rizg WY, Sabei FY, Madkhali OA, Bakkari MA, Alfayez E, Alkharobi H, Alghamdi SA, Banjar AA, Majrashi M, Alissa M. Utilization of experimental design in the formulation and optimization of hyaluronic acid-based nanoemulgel loaded with a turmeric-curry leaf oil nanoemulsion for gingivitis. Drug Deliv 2023; 30:2184311. [PMID: 36846914 PMCID: PMC9980406 DOI: 10.1080/10717544.2023.2184311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Numerous problems affect oral health, and intensive research is focused on essential oil-based nanoemulsions that might treat prevent or these problems. Nanoemulsions are delivery systems that enhance the distribution and solubility of lipid medications to targeted locations. Turmeric (Tur)- and curry leaf oil (CrO)-based nanoemulsions (CrO-Tur-self-nanoemulsifying drug delivery systems [SNEDDS]) were developed with the goal of improving oral health and preventing or treating gingivitis. They could be valuable because of their antibacterial and anti-inflammatory capabilities. CrO-Tur-SNEDDS formulations were produced using the response surface Box-Behnken design with different concentrations of CrO (120, 180, and 250 mg), Tur (20, 35, and 50 mg), and Smix 2:1 (400, 500, and 600 mg). The optimized formulation had a bacterial growth inhibition zone of up to 20 mm, droplet size of less than 140 nm, drug-loading efficiency of 93%, and IL-6 serum levels of between 950 ± 10 and 3000 ± 25 U/ml. The optimal formulation, which contained 240 mg of CrO, 42.5 mg of Tur, and 600 mg of Smix 2:1, was created using the acceptable design. Additionally, the best CrO-Tur-SNEDDS formulation was incorporated into a hyaluronic acid gel, and thereafter it had improved ex-vivo transbuccal permeability, sustained in-vitro release of Tur, and large bacterial growth suppression zones. The optimal formulation loaded into an emulgel had lower levels of IL-6 in the serum than the other formulations evaluated in rats. Therefore, this investigation showed that a CrO-Tur-SNEDDS could provide strong protection against gingivitis caused by microbial infections.
Collapse
Affiliation(s)
- Amal M. Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia,CONTACT Khaled M. Hosny , Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Ali Bakkari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Eman Alfayez
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanaa Alkharobi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar A Alghamdi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa A. Banjar
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
7
|
Alissa M, Hjazi A, Abusalim GS, Aloraini GS, Alghamdi SA, Rizg WY, Hosny KM, Bukhary DM, Alkharobi H. Fabrication and optimization of phospholipids-based phase separation in-situ gel loaded with BMP-2 nanosized emulsion for bone defect. Front Pharmacol 2023; 14:1286133. [PMID: 37915413 PMCID: PMC10616790 DOI: 10.3389/fphar.2023.1286133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction: The health, development, and/or survival of a newborn can be impacted by congenital abnormalities such as cleft lip (CLP) and palate, one of alveolar bone defects that emerge thru pregnancy. Therefore, the primary purpose of this study is to use phospholipids-based phase separation in-situ gel (PPSG) in combination with bone morphogenetic protein-2 nanoemulsion (BMP-2-NE) to aid repairing alveolar bone defects. Methods: To investigate how formulation parameters, such as the concentrations of BMP-2 aqueous solution, LauroglycolTM FCC, and Labrafac PG oil, affect NE qualities including droplet size and stability index, an l-optimal co-ordinate exchange statistical design was opted. Injectable PPSG with the best NE formulation was tested for viscosity characteristics, gel strength, water absorption, and in-vitro BMP-2 release. In rabbits, the percentage of BMP-2 that was still in the maxilla after 14 days was assessed. Results: Collected results revealed that the droplet size and stability index of optimal NE were discovered to be 68 2.0 nm and 96 1.3%, respectively. When mixed with water, optimal BMP-2 NE loaded PPSG became viscous and reached a gel strength of 41 s, which is adequate for injectable in-situ gels. In comparison to BMP-2 solution loaded in-situ gel, the in-vivo studies indicated that the newly created BMP-2 NE loaded PPSG produced a sustained and controlled release of BMP-2 that continued for 336 h (14 days). Further, 8% of the BMP-2 was still entrapped and not completely dissolved after 14 days, thus, created formulation allowed a higher percentage of BMP-2 to remain in rabbits' maxilla for longer time. Conclusion: PPSG that has been loaded with BMP-2 NE may therefore be a promising, fruitful, and less painful paradigm for the noninvasive therapy of CLP with significant effect and extended release.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghadah S. Abusalim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghfren S. Aloraini
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A. Alghamdi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanaa Alkharobi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Alissa M, Hjazi A, Abusalim GS, Aloraini GS, Alghamdi SA, Rizg WY, Hosny KM, Alblowi JA, Alkharobi H. Development and Optimization of a Novel Lozenge Containing a Metronidazole-Peppermint Oil-Tranexamic Acid Self-Nanoemulsified Delivery System to Be Used after Dental Extraction: In Vitro Evaluation and In Vivo Appraisal. Pharmaceutics 2023; 15:2342. [PMID: 37765310 PMCID: PMC10535350 DOI: 10.3390/pharmaceutics15092342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
In-depth studies on essential oil-based nanoemulsions (NEs) have centered on a variety of oral health issues. NEs improve the delivery of nonpolar active agents to sites and thereby boost the dissolution and distribution of the agents. Metronidazole-peppermint oil-tranexamic acid self-nanoemulsifying drug delivery systems (MZ-PO-TX-SNEDDS) were created and loaded into novel lozenges to act as antifungal, hemostatic, antimicrobial, and analgesic dosage forms after dental extractions. The design-of-experiments approach was used in creating them. To generate the NEs, different concentrations of MZ-PO (240, 180, and 120 mg), 2% TX (600, 450, and 300 mg), and Smix1:1 (600, 400, and 200 mg) were used. The ideal formulation had serum levels of 1530 U/mL of interleukin-6, a minimal inhibitory concentration against bacteria of 1.5 µg/mL, a droplet size of 96 nm, and a blood coagulation time of 16.5 min. Moreover, the produced NE offered better MZ release. The adopted design was used to produce the ideal formulation; it contained 240 mg of MZ-PO, 600 mg of 2% TX, and 600 mg of Smix1:1. It was incorporated into lozenges with acceptable characteristics and an improved capability for drug release. These lozenges had reasonable coagulation times, IL-6 serum levels, and MIC values. All of these characteristics are desirable for managing symptoms following tooth extractions. Therefore, these lozenges loaded with MZ-PO-TX-SNEDDs might be considered a beneficial paradigm for relieving complications encountered after tooth extractions.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.); (G.S.A.); (G.S.A.); (S.A.A.)
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.); (G.S.A.); (G.S.A.); (S.A.A.)
| | - Ghadah S. Abusalim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.); (G.S.A.); (G.S.A.); (S.A.A.)
| | - Ghfren S. Aloraini
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.); (G.S.A.); (G.S.A.); (S.A.A.)
| | - Suad A. Alghamdi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.); (G.S.A.); (G.S.A.); (S.A.A.)
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (K.M.H.)
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (K.M.H.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Jazia A. Alblowi
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hanaa Alkharobi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
9
|
Ali SA, Alhakamy NA, Hosny KM, Alfayez E, Bukhary DM, Safhi AY, Badr MY, Mushtaq RY, Alharbi M, Huwaimel B, Alissa M, Alshehri S, Alamri AH, Alqahtani T. Rapid oral transmucosal delivery of zaleplon-lavender oil utilizing self-nanoemulsifying lyophilized tablets technology: development, optimization and pharmacokinetic evaluation. Drug Deliv 2022; 29:2773-2783. [PMID: 36036168 PMCID: PMC9429977 DOI: 10.1080/10717544.2022.2115165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Based on the administration convenience, transmucosal buccal drug delivery allows special strength points over peroral routes for systemic delivery. It could achieve local or systemic effect and boost drugs’ bioavailability for agents with first pass metabolism. The current study aimed to manufacture and optimize a lavender oil–based nanoemulsion loaded with zaleplon and incorporate it into fast-disintegrating tablets to promote its dissolution and oral bioavailability via oral mucosa. Zaleplon-loaded nanoemulsions were devised with various levels of lavender oil (10% to 25%), the surfactant Sorbeth-20 (35% to 65%), and the co-surfactant HCO-60 (20% to 40%); the extreme vertices mixture statistical design was adopted. The droplet size and drug-loading efficiency were the evaluated. The optimal formulation was transformed into self-nanoemulsified lyophilized tablets (ZP-LV-SNELTs), which were tested for their uniformity of content, friability, and disintegration time with in-vitro release. Finally, the pharmacokinetic parameters of the ZP-LV-SNELTs were determined and compared with those of marketed formulations. The optimal nanoemulsion had a droplet size of 87 nm and drug-loading capacity of 185 mg/mL. ZP-LV-SNELTs exhibited acceptable friability and weight uniformity and a short disintegration time. The in-vitro release of ZP-LV-SNELTs was 17 times faster than that of the marketed tablet. Moreover, the optimal ZP-LV-SNELTs increased the bioavailability of zaleplon in rabbits by 1.6-fold compared with the commercial tablets. Hence, this investigation revealed that ZP-LV-SNELTs delivered zaleplon with enhanced solubility, a fast release, and boosted bioavailability thru oral mucosa which provided a favorable route for drug administration which is suggested to be clinically investigated in future studies
Collapse
Affiliation(s)
- Sarah A Ali
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eman Alfayez
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deena M Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Moutaz Y Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Rehman A, Iqbal M, Khan BA, Khan MK, Huwaimel B, Alshehri S, Alamri AH, Alzhrani RM, Bukhary DM, Safhi AY, Hosny KM. Fabrication, In Vitro, and In Vivo Assessment of Eucalyptol-Loaded Nanoemulgel as a Novel Paradigm for Wound Healing. Pharmaceutics 2022; 14:1971. [PMID: 36145720 PMCID: PMC9500607 DOI: 10.3390/pharmaceutics14091971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Wounds are the most common causes of mortality all over the world. Topical drug delivery systems are more efficient in treating wounds as compared to oral delivery systems because they bypass the disadvantages of the oral route. The aim of the present study was to formulate and evaluate in vitro in vivo nanoemulgels loaded with eucalyptol for wound healing. Nanoemulsions were prepared using the solvent emulsification diffusion method by mixing an aqueous phase and an oil phase, and a nanoemulgel was then fabricated by mixing nanoemulsions with a gelling agent (Carbopol 940) in a 1:1 ratio. The nanoemulgels were evaluated regarding stability, homogeneity, pH, viscosity, Fourier-transform infrared spectroscopy (FTIR), droplet size, zeta potential, polydispersity index (PDI), spreadability, drug content, in vitro drug release, and in vivo study. The optimized formulation, F5, exhibited pH values between 5 and 6, with no significant variations at different temperatures, and acceptable homogeneity and spreadability. F5 had a droplet size of 139 ± 5.8 nm, with a low polydispersity index. FTIR studies showed the compatibility of the drug with the excipients. The drug content of F5 was 94.81%. The percentage of wound contraction of the experimental, standard, and control groups were 100% ± 0.015, 98.170% ± 0.749, and 70.846% ± 0.830, respectively. Statistically, the experimental group showed a significant difference (p < 0.03) from the other two groups. The results suggest that the formulated optimized dosage showed optimum stability, and it can be considered an effective wound healing alternative.
Collapse
Affiliation(s)
- Anis Rehman
- Drug Delivery and Cosmetic Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.R.); (M.I.); (B.A.K.); (M.K.K.)
| | - Muhammad Iqbal
- Drug Delivery and Cosmetic Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.R.); (M.I.); (B.A.K.); (M.K.K.)
| | - Barkat A. Khan
- Drug Delivery and Cosmetic Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.R.); (M.I.); (B.A.K.); (M.K.K.)
| | - Muhammad Khalid Khan
- Drug Delivery and Cosmetic Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.R.); (M.I.); (B.A.K.); (M.K.K.)
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (R.M.A.)
| | - Ali H. Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Rami M. Alzhrani
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (R.M.A.)
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Rizg WY, Hosny KM, Eshmawi BA, Alamoudi AJ, Safhi AY, Murshid SSA, Sabei FY, Al Fatease A. Tailoring of Geranium Oil-Based Nanoemulsion Loaded with Pravastatin as a Nanoplatform for Wound Healing. Polymers (Basel) 2022; 14:polym14091912. [PMID: 35567079 PMCID: PMC9105023 DOI: 10.3390/polym14091912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
The healing of a burn wound is a complex process that includes the re-formation of injured tissues and the control of infection to minimize discomfort, scarring, and inconvenience. The current investigation’s objective was to develop and optimize a geranium oil–based self-nanoemulsifying drug delivery system loaded with pravastatin (Gr-PV-NE). The geranium oil and pravastatin were both used due to their valuable anti-inflammatory and antibacterial activities. The Box–Behnken design was chosen for the development and optimization of the Gr-PV-NE. The fabricated formulations were assessed for their droplet size and their effects on the burn wound diameter in experimental animals. Further, the optimal formulation was examined for its wound healing properties, antimicrobial activities, and ex-vivo permeation characteristics. The produced nanoemulsion had a droplet size of 61 to 138 nm. The experimental design affirmed the important synergistic influence of the geranium oil and pravastatin for the healing of burn wounds; it showed enhanced wound closure and improved anti-inflammatory and antimicrobial actions. The optimal formulation led to a 4-fold decrease in the mean burn wound diameter, a 3.81-fold lowering of the interleukin-6 serum level compared to negative control, a 4-fold increase in the inhibition zone against Staphylococcus aureus compared to NE with Gr oil, and a 7.6-fold increase in the skin permeation of pravastatin compared to PV dispersion. Therefore, the devised nanoemulsions containing the combination of geranium oil and pravastatin could be considered a fruitful paradigm for the treatment of severe burn wounds.
Collapse
Affiliation(s)
- Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-561-682-377
| | - Bayan A. Eshmawi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (B.A.E.)
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (F.Y.S.)
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fahad Y. Sabei
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (F.Y.S.)
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| |
Collapse
|
12
|
Alhakamy NA, Hosny KM, Rizg WY, Eshmawi BA, Badr MY, Safhi AY, Murshid SSA. Development and Optimization of Hyaluronic Acid-Poloxamer In-Situ Gel Loaded with Voriconazole Cubosomes for Enhancement of Activity against Ocular Fungal Infection. Gels 2022; 8:gels8040241. [PMID: 35448142 PMCID: PMC9032757 DOI: 10.3390/gels8040241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Fungal eye infections are largely disseminated, especially in developing countries where they may leave over half a million people blind per year. The current study aims to boost the voriconazole antifungal efficiency via loading it as cubosomes (VZ-Cub) into hyaluronic acid and poloxamer-based ocular in situ gel. VZ-Cub were fabricated applying Box-Behnken design and employing phytantriol, poloxamer F127, and VZ amounts as independent variables. The produced nano vesicles were evaluated for the dependent variables of particle size (PS), entrapment efficiency (EE%), and transcorneal steady-state flux (Jss) of the VZ, and, the obtained optimal VZ-Cub was loaded into an in situ gel base to enhance its ocular residence time. The in situ gel formulation was tested for its gelation temperature, drug release behavior, transcorneal permeation effects, and antifungal activity. The optimized VZ-Cub consisted of 100 mg of phytantriol, 60 mg of poloxamer F127, and 21 mg of VZ. This formulation led to a minimum PS of 71 nm, an EE% of 66%, Jss value of 6.5 µg/(cm2·min), and stability index of 94 ± 2%. The optimized VZ-Cub-loaded in situ gel released 84% VZ after 12 h and yielded a 4.5-fold increase in drug permeation compared with the VZ aqueous dispersion. The antifungal activity, which was obtained by measuring the fungal growth inhibition zones, revealed that the VZ-Cub-loaded in situ gel formulation had a 3.89-fold increase in antifungal activity compared with the VZ dispersion. In summary, an ocular in situ gel loaded with VZ-Cub could be an effective novel nano-paradigm with enhanced transcorneal permeation and antifungal properties.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence:
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bayan A. Eshmawi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
| | - Moutaz Y. Badr
- Department of Pharmaceutics, Collage of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia;
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| |
Collapse
|