1
|
Ding J, Jiang Y, Jiang N, Xing S, Ge F, Ma P, Tang Q, Miao H, Zhou J, Fang Y, Cui D, Liu D, Han Y, Yu W, Wang Y, Zhao G, Cai Y, Wang S, Sun N, Li N. Bridging the gap: unlocking the potential of emerging drug therapies for brain metastasis. Brain 2025; 148:702-722. [PMID: 39512184 DOI: 10.1093/brain/awae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 11/15/2024] Open
Abstract
Brain metastasis remains an unmet clinical need in advanced cancers with an increasing incidence and poor prognosis. The limited response to various treatments is mainly derived from the presence of the substantive barrier, blood-brain barrier (BBB) and brain-tumour barrier (BTB), which hinders the access of potentially effective therapeutics to the metastatic tumour of the brain. Recently, the understanding of the structural and molecular features of the BBB/BTB has led to the development of efficient strategies to enhance BBB/BTB permeability and deliver drugs across the BBB/BTB to elicit the anti-tumour response against brain metastasis. Meanwhile, novel agents capable of penetrating the BBB have rapidly developed and been evaluated in preclinical studies and clinical trials, with both targeted therapies and immunotherapies demonstrating impressive intracranial activity against brain metastasis. In this review, we summarize the recent advances in the biological properties of the BBB/BTB and the emerging strategies for BBB/BTB permeabilization and drug delivery across the BBB/BTB. We also discuss the emerging targeted therapies and immunotherapies against brain metastasis tested in clinical trials. Additionally, we provide our viewpoints on accelerating clinical translation of novel drugs into clinic for patients of brain metastasis. Although still challenging, we expect this review to benefit the future development of novel therapeutics, specifically from a clinical perspective.
Collapse
Affiliation(s)
- Jiatong Ding
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yale Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Xing
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fan Ge
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peiwen Ma
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiyu Tang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huilei Miao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiawei Zhou
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dandan Cui
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongyan Liu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanjie Han
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weijie Yu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuning Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guo Zhao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuanting Cai
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
2
|
Gong B, Zhang W, Cong W, Gu Y, Ji W, Yin T, Zhou H, Hu H, Zhuang J, Luo Y, Liu Y, Gao J, Yin Y. Systemic Administration of Neurotransmitter-Derived Lipidoids-PROTACs-DNA Nanocomplex Promotes Tau Clearance and Cognitive Recovery for Alzheimer's Disease Therapy. Adv Healthc Mater 2024; 13:e2400149. [PMID: 39007278 DOI: 10.1002/adhm.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Alzheimer's disease (AD) poses a significant burden on the economy and healthcare systems worldwide. Although the pathophysiology of AD remains debatable, its progression is strongly correlated with the accumulation of tau aggregates. Therefore, tau clearance from brain lesions can be a promising strategy for AD therapy. To achieve this, the present study combined proteolysis-targeting chimera (PROTAC), a novel protein-degradation technique that mediates degradation of target proteins via the ubiquitin-proteasome system, and a neurotransmitter-derived lipidoid (NT-lipidoid) nanoparticle delivery system with high blood-brain barrier-penetration activity, to generate a novel nanomedicine named NPD. Peptide 1, a cationic tau-targeting PROTAC is loaded onto the positively charged nanoparticles using DNA-intercalation technology. The resulting nanomedicine displayed good encapsulation efficiency, serum stability, drug release profile, and blood-brain barrier-penetration capability. Furthermore, NPD potently induced tau clearance in both cultured neuronal cells and the brains of AD mice. Moreover, intravenous injection of NPD led to a significant improvement in the cognitive function of the AD mice, without any remarkable abnormalities, thereby supporting its clinical development. Collectively, the novel nanomedicine developed in this study may serve as an innovative strategy for AD therapy, since it effectively and specifically induces tau protein clearance in brain lesions, which in turn enhances cognition.
Collapse
Affiliation(s)
- Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Wei Cong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Honglei Zhou
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Yi Luo
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, 519080, China
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200240, China
| | - Yan Liu
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200240, China
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
3
|
Archontakis E, Woythe L, van Hoof B, Albertazzi L. Mapping the relationship between total and functional antibodies conjugated to nanoparticles with spectrally-resolved direct stochastic optical reconstruction microscopy (SR-dSTORM). NANOSCALE ADVANCES 2022; 4:4402-4409. [PMID: 36321150 PMCID: PMC9552925 DOI: 10.1039/d2na00435f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Antibody-functionalized nanoparticles (NPs) have shown numerous benefits in drug delivery and biosensing, improving the specificity of cell targeting and analyte detection, respectively. However, one of the main challenges is the lack of control over antibody orientation on the NP surface. Popular and easy conjugation strategies, such as carbodiimide-based conjugations, lead to a random orientation of antibodies on the NPs, compromising ligand functionality and contributing to undesired biological effects and reduced target recognition. While new methods for more controlled NP functionalization have been proposed, there is a lack of techniques that can elucidate the orientation of the antibodies at the single-particle level to determine the conjugation outcome and, therefore, the NPs' potential in selective targeting. Here, spectrally-resolved direct stochastic optical reconstruction microscopy (SR-dSTORM), an optical super-resolution technique, is introduced to quantify the relationship between total and functional NP conjugated cetuximab antibodies at the single-particle level. An evident single-particle heterogeneity in total and functional cetuximab is observed, leading to particles with different functional : total ratios. Additionally, the results indicate that the functional : total ratio of cetuximab highly depends on the conjugated cetuximab concentration. Overall, SR-dSTORM represents a direct approach for the NP structure-functionality relationship quantification, providing a platform to improve antibody-conjugated NPs characterization and facilitating their rational design.
Collapse
Affiliation(s)
- Emmanouil Archontakis
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Laura Woythe
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Bas van Hoof
- Department of Applied Physics, Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
| |
Collapse
|