1
|
Moreno Tarazona E, Orozco Gonzalez M, La Rosa Giron A, Ruiz-Grosso P, Lazo-Porras M. Prevalence of obsessive-compulsive symptoms in patients with schizophrenia treated with clozapine: a scoping review. BMC Psychiatry 2025; 25:71. [PMID: 39849391 PMCID: PMC11759428 DOI: 10.1186/s12888-024-06466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Schizophrenia is a complex psychiatric disorder, and in patients treated with clozapine, it may induce or exacerbate obsessive-compulsive symptoms (OCS), which negatively affect patients' quality of life, functionality and treatment adherence. Despite its clinical relevance, the reported prevalence and characteristics of clozapine associated OCS vary widely, limiting effective management. OBJECTIVE This scoping review synthesizes evidence on the prevalence of OCS in patients with schizophrenia treated with clozapine and explores treatment characteristics (types, severity, dose, and time to onset/exacerbation). METHODS The PRISMA-ScR methodology guided the search in PubMed, LILACS, Embase, and Scielo. Observational studies in Spanish, English, Portuguese, and French reporting prevalence, incidence, or frequency of OCS in patients over 18 years with schizophrenia treated with clozapine were included. Clinical, qualitative studies, and those with access restrictions were excluded. Risk of bias was assessed using JBI tools. RESULTS Fourteen studies were included, reporting OCS prevalence between 20% and 76%, and de novo OCS between 4.8% and 46.4%. Clozapine dose ranged from 196 to 525 mg/day, and treatment duration from 5 to 210 months. The most common obsessions were aggression and checking, with severity ranging from mild to moderate. CONCLUSIONS The prevalence of OCS in patients treated with clozapine varies widely. Further research is needed to clarify the relationship between dose, treatment duration, and the onset/exacerbation of OCS.
Collapse
Affiliation(s)
| | | | | | - Paulo Ruiz-Grosso
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Lazo-Porras
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
2
|
Agid O, Crespo-Facorro B, de Bartolomeis A, Fagiolini A, Howes OD, Seppälä N, Correll CU. Overcoming the barriers to identifying and managing treatment-resistant schizophrenia and to improving access to clozapine: A narrative review and recommendation for clinical practice. Eur Neuropsychopharmacol 2024; 84:35-47. [PMID: 38657339 DOI: 10.1016/j.euroneuro.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Clozapine is the only approved antipsychotic for treatment-resistant schizophrenia (TRS). Although a large body of evidence supports its efficacy and favorable risk-benefit ratio in individuals who have failed two or more antipsychotics, clozapine remains underused. However, variations in clozapine utilization across geographic and clinical settings suggest that it could be possible to improve its use. In this narrative review and expert opinion, we summarized information available in the literature on the mechanisms of action, effectiveness, and potential adverse events of clozapine. We identified barriers leading to discouragement in clozapine prescription internationally, and we proposed practical solutions to overcome each barrier. One of the main obstacles identified to the use of clozapine is the lack of appropriate training for physicians: we highlighted the need to develop specific professional programs to train clinicians, both practicing and in residency, on the relevance and efficacy of clozapine in TRS treatment, initiation, maintenance, and management of potential adverse events. This approach would facilitate physicians to identify eligible patients and offer clozapine as a treatment option in the early stage of the disease. We also noted that increasing awareness of the benefits of clozapine among healthcare professionals, people with TRS, and their caregivers can help promote the use of clozapine. Educational material, such as leaflets or videos, could be developed and distributed to achieve this goal. The information provided in this article may be useful to improve disease burden and support healthcare professionals, patients, and caregivers navigating the complex pathways to TRS management.
Collapse
Affiliation(s)
- Ofer Agid
- Centre for Addiction and Mental Health, University of Toronto, Canada
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocío-IBiS-CSIC, Sevilla, Spain, Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Sevilla, Spain
| | - Andrea de Bartolomeis
- University of Naples Federico II, Department of Neuroscience, Reproductive Science, and Odontostomatology. Laboratory of Molecular and Translational Psychiatry. Unit of Treatment Resistant Psychosis, Naples, Italy; Staff Unesco Chair at University of Naples Federico II, Italy
| | | | - Oliver D Howes
- IoPPN, King's College London, De Crespigny Park, London, United Kingdom; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, United Kingdom
| | - Niko Seppälä
- Wellbeing Services in Satakunta, Department of Psychiatry, Pori, Finland and Medical Consultant, Viatris, Finland
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, New York, United States; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, New York, United States; Charité - Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, Berlin 13353, Germany; German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Feng J, Zhou P, Qin C, Chen R, Chen Q, Li L, Chen J, Cheng H, Huang W, Cao J. Magnetic solid-phase extraction-based surface-enhanced Raman spectroscopy for label-free therapeutic drug monitoring of carbamazepine and clozapine in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123924. [PMID: 38262293 DOI: 10.1016/j.saa.2024.123924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Determination of antiepileptic drugs and antipsychotics in human serum is significant in individualized drug administration and therapeutic drug monitoring (TDM). In this study, we developed a rapid label-free TDM method for the antiepileptic drug carbamazepine (CBZ) and the antipsychotic clozapine (CLO) in human serum. This detection strategy is based on the combination of surface-enhanced Raman scattering (SERS) and magnetic solid-phase extraction (MSPE). Initially, Fe3O4@SiO2@MIL-101(Fe) nanocomposites were synthesized by the layer-by-layer self-assembly method and characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, ultraviolet-visible, and Fourier transform infrared analyses. Subsequently, CBZ and CLO were detected in human serum using Fe3O4@SiO2@MIL-101(Fe) as the solid-phase extraction adsorbent and Ag nanoparticles as SERS substrates. The potential of the MSPE-SERS method for the label-free TDM of CBZ and CLO was then investigated. Fe3O4@SiO2@MIL-101(Fe) prevents magnetic particle aggregation and demonstrates rapid magnetic separation capability that simplifies the pretreatment process and reduces interference from complex matrices. Its large surface area can effectively enrich targets in complex matrices, thereby improving the SERS detection sensitivity. The linearity between CBZ and CLO was excellent over the concentration range of 0.1-100 µg/mL (calculated as the intensity of the SERS characteristic peaks of CBZ and CLO at 728 cm and 1054 cm-1, respectively), with correlation coefficients (R2) of 0.9987 and 0.9957, and detection limits of 0.072 and 0.12 µg/mL, respectively. The recoveries of CBZ with CLO ranged from 94.0 % to 105.0 %, and their relative standard deviations were <6.8 %. Compared to other assays, the developed MSPE-SERS method has the advantages of simple sample pretreatment, rapid detection, and good reproducibility, which provides a novel approach for the TDM of other drugs.
Collapse
Affiliation(s)
- Jun Feng
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, PR China
| | - Pei Zhou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Chunli Qin
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, PR China
| | - Ruijue Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Qiying Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Lina Li
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, PR China
| | - Jun Chen
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Jinru Cao
- Dongguan Key Laboratory of Precision Molecular Diagnostics, Prenatal Diagnosis Center, Dongguan Songshan Lake Central Hospital, Dongguan 523200, Guangdong, PR China.
| |
Collapse
|
4
|
Ding J, Liu J, Zhang Y, Xing H, Zhang Y, Li L, Zhang S, Wang H, Yang L, Cui X. A retrospective study of clozapine and norclozapine concentration in patients with schizophrenia: Data from the Therapeutic Drug Monitoring Service, 2019-2022. Asian J Psychiatr 2024; 91:103865. [PMID: 38113699 DOI: 10.1016/j.ajp.2023.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE The aim of this research was to assess the therapeutic drug monitoring (TDM) of clozapine (CLO) and norclozapine (NCLO). METHODS TDM results of CLO and NCLO in patients obtained from the Xi'an Mental Health Center were retrospectively analyzed. RESULTS TDM of CLO and NCLO was typically conducted only once in the majority of patients, particularly those receiving outpatient care. The CLO plasma concentrations were higher in inpatients and female patients. The interquartile (25th-75th) CLO concentrations ranged from 129.83 to 397.53 ng/mL, nearly 68.63% of the samples had subtherapeutic concentrations (<350 ng/mL). Receiver operating characteristic curve analysis showed that inpatients achieved the therapeutic level concentration of 350-600 ng/mL when their daily CLO dose was > 125 mg. CONCLUSIONS It was surprising to find such a large number of patients with CLO levels below the therapeutic range, there is still a window of improvement for optimizing pharmacological treatments in clinical practice.
Collapse
Affiliation(s)
- Jing Ding
- Xi'an Mental Health Center, 710100 Xi'an, PR China; Xi'an Key Laboratory of Pharmacy (Mental Health), Xi'an Mental Health Center, 710100 Xi'an, PR China; Pharmacy Laboratory, Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Jianfeng Liu
- Department of Psychiatry, Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Yan Zhang
- Xi'an Mental Health Center, 710100 Xi'an, PR China; Xi'an Key Laboratory of Pharmacy (Mental Health), Xi'an Mental Health Center, 710100 Xi'an, PR China; Pharmacy Laboratory, Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Huan Xing
- Xi'an Mental Health Center, 710100 Xi'an, PR China; Xi'an Key Laboratory of Pharmacy (Mental Health), Xi'an Mental Health Center, 710100 Xi'an, PR China; Pharmacy Laboratory, Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Yang Zhang
- Xi'an Mental Health Center, 710100 Xi'an, PR China; Xi'an Key Laboratory of Pharmacy (Mental Health), Xi'an Mental Health Center, 710100 Xi'an, PR China; Pharmacy Laboratory, Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Luyao Li
- Xi'an Mental Health Center, 710100 Xi'an, PR China; Xi'an Key Laboratory of Pharmacy (Mental Health), Xi'an Mental Health Center, 710100 Xi'an, PR China; Pharmacy Laboratory, Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Suo Zhang
- Xi'an Mental Health Center, 710100 Xi'an, PR China; Xi'an Key Laboratory of Pharmacy (Mental Health), Xi'an Mental Health Center, 710100 Xi'an, PR China; Pharmacy Laboratory, Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Huiyuan Wang
- Department of Psychiatry, Xi'an Mental Health Center, 710100 Xi'an, PR China
| | - Liu Yang
- Department of Research and Education, Xi'an Mental Health Center, 710100 Xi'an, PR China.
| | - Xiaohua Cui
- Xi'an Mental Health Center, 710100 Xi'an, PR China; Xi'an Key Laboratory of Pharmacy (Mental Health), Xi'an Mental Health Center, 710100 Xi'an, PR China; Pharmacy Laboratory, Xi'an Mental Health Center, 710100 Xi'an, PR China.
| |
Collapse
|
5
|
Dawson JL, Sluggett JK, Procter NG, Myles N, Bell JS. Hematological and Other Cancers in People Using Clozapine: Analysis of Australian Spontaneous Reports Between 1995 and 2020. J Clin Psychopharmacol 2023:00004714-990000000-00131. [PMID: 37104657 DOI: 10.1097/jcp.0000000000001699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
BACKGROUND Recent observational study evidence suggests that clozapine, unlike other antipsychotics, may be associated with a small increased risk of hematological malignancy. This study described characteristics of hematological and other cancers in those taking clozapine reported to the Australian Therapeutic Goods Administration. METHODS We analyzed public case reports for "clozapine," "Clozaril," or "Clopine" from January 1995 to December 2020 classified as "neoplasm benign, malignant and unspecified" by the Australian Therapeutic Goods Administration. Data on age, sex, dose, clozapine start and cessation dates, Medical Dictionary for Regulatory Activities reaction terms, and date of cancer were extracted. RESULTS Overall, 384 spontaneous reports of cancers in people taking clozapine were analyzed. The mean age of patients was 53.9 years (SD, 11.4 years), and 224 (58.3%) were male. The most frequent cancers were hematological (n = 104 [27.1%]), lung (n = 50 [13.0%]), breast (n = 37 [9.6%]), and colorectal (n = 28 [7.3%]). The outcome was fatal for 33.9% of cancer reports. Lymphoma comprised 72.1% of all hematological cancers (mean patient age, 52.1 years; SD, 11.6 years). The median daily dose of clozapine at the time of hematological cancer report was 400 mg (interquartile range, 300-543.8 mg), and the median duration of clozapine use before hematological cancer diagnosis was 7.0 years (interquartile range, 2.8-13.2 years). CONCLUSIONS Lymphoma and other hematological cancers are overrepresented in spontaneous adverse event reports compared with other cancer types. Clinicians should be aware of the possible association with hematological cancers and monitor for and report any hematological cancers identified. Future studies should examine histology of lymphomas in people using clozapine and corresponding blood level of clozapine.
Collapse
Affiliation(s)
| | | | - Nicholas G Procter
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide
| | | | - J Simon Bell
- From the Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria
| |
Collapse
|
6
|
Ansaar R, Meech R, Rowland A. A Physiologically Based Pharmacokinetic Model to Predict Determinants of Variability in Epirubicin Exposure and Tissue Distribution. Pharmaceutics 2023; 15:pharmaceutics15041222. [PMID: 37111707 PMCID: PMC10143085 DOI: 10.3390/pharmaceutics15041222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Epirubicin is an anthracycline antineoplastic drug that is primarily used in combination therapies for the treatment of breast, gastric, lung and ovarian cancers and lymphomas. Epirubicin is administered intravenously (IV) over 3 to 5 min once every 21 days with dosing based on body surface area (BSA; mg/m2). Despite accounting for BSA, marked inter-subject variability in circulating epirubicin plasma concentration has been reported. METHODS In vitro experiments were conducted to determine the kinetics of epirubicin glucuronidation by human liver microsomes in the presence and absence of validated UGT2B7 inhibitors. A full physiologically based pharmacokinetic model was built and validated using Simcyp® (version 19.1, Certara, Princeton, NJ, USA). The model was used to simulate epirubicin exposure in 2000 Sim-Cancer subjects over 158 h following a single intravenous dose of epirubicin. A multivariable linear regression model was built using simulated demographic and enzyme abundance data to determine the key drivers of variability in systemic epirubicin exposure. RESULTS Multivariable linear regression modelling demonstrated that variability in simulated systemic epirubicin exposure following intravenous injection was primarily driven by differences in hepatic and renal UGT2B7 expression, plasma albumin concentration, age, BSA, GFR, haematocrit and sex. By accounting for these factors, it was possible to explain 87% of the variability in epirubicin in a simulated cohort of 2000 oncology patients. CONCLUSIONS The present study describes the development and evaluation of a full-body PBPK model to assess systemic and individual organ exposure to epirubicin. Variability in epirubicin exposure was primarily driven by hepatic and renal UGT2B7 expression, plasma albumin concentration, age, BSA, GFR, haematocrit and sex.
Collapse
Affiliation(s)
- Radwan Ansaar
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Robyn Meech
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
7
|
Mostafa S, Polasek TM, Bousman C, Rostami‐Hodjegan A, Sheffield LJ, Everall I, Pantelis C, Kirkpatrick CMJ. Delineating gene-environment effects using virtual twins of patients treated with clozapine. CPT Pharmacometrics Syst Pharmacol 2022; 12:168-179. [PMID: 36424701 PMCID: PMC9931435 DOI: 10.1002/psp4.12886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022] Open
Abstract
Studies that focus on individual covariates, while ignoring their interactions, may not be adequate for model-informed precision dosing (MIPD) in any given patient. Genetic variations that influence protein synthesis should be studied in conjunction with environmental covariates, such as cigarette smoking. The aim of this study was to build virtual twins (VTs) of real patients receiving clozapine with interacting covariates related to genetics and environment and to delineate the impact of interacting covariates on predicted clozapine plasma concentrations. Clozapine-treated patients with schizophrenia (N = 42) with observed clozapine plasma concentrations, demographic, environmental, and genotype data were used to construct VTs in Simcyp. The effect of increased covariate virtualization was assessed by performing simulations under three conditions: "low" (demographic), "medium" (demographic and environmental interaction), and "high" (demographic and environmental/genotype interaction) covariate virtualization. Increasing covariate virtualization with interaction improved the coefficient of variation (R2 ) from 0.07 in the low model to 0.391 and 0.368 in the medium and high models, respectively. Whereas R2 was similar between the medium and high models, the high covariate virtualization model had improved accuracy, with systematic bias of predicted clozapine plasma concentration improving from -138.48 ng/ml to -74.65 ng/ml. A high level of covariate virtualization (demographic, environmental, and genotype) may be required for MIPD using VTs.
Collapse
Affiliation(s)
- Sam Mostafa
- Centre for Medicine Use and SafetyMonash UniversityVictoriaParkvilleAustralia,MyDNA LifeAustralia LimitedVictoriaSouth YarraAustralia
| | - Thomas M. Polasek
- Centre for Medicine Use and SafetyMonash UniversityVictoriaParkvilleAustralia,CertaraNew JerseyPrincetonUSA,Department of Clinical PharmacologyRoyal Adelaide HospitalSouth AustraliaAdelaideAustralia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of Melbourne & Melbourne HealthVictoriaMelbourneAustralia,The Cooperative Research Centre (CRC) for Mental HealthVictoriaMelbourneAustralia,Alberta Children's Hospital Research Institute, Cumming School of MedicineUniversity of CalgaryAlbertaCalgaryCanada,Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryAlbertaCalgaryCanada,Departments of Medical Genetics, Psychiatry, and Physiology and PharmacologyUniversity of CalgaryAlbertaCalgaryCanada
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Health SciencesUniversity of ManchesterManchesterUK,Simcyp DivisionCertara UK LimitedSheffieldUK
| | | | - Ian Everall
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of Melbourne & Melbourne HealthVictoriaMelbourneAustralia,The Cooperative Research Centre (CRC) for Mental HealthVictoriaMelbourneAustralia,Western Australian Health Translation NetworkNedlandsWestern AustraliaAustralia,Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneVictoriaMelbourneAustralia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of Melbourne & Melbourne HealthVictoriaMelbourneAustralia,The Cooperative Research Centre (CRC) for Mental HealthVictoriaMelbourneAustralia,Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneVictoriaMelbourneAustralia
| | | |
Collapse
|
8
|
Jelliffe R, Liu J, Drusano GL, Martinez MN. Individualized Patient Care Through Model-Informed Precision Dosing: Reflections on Training Future Practitioners. AAPS J 2022; 24:117. [PMID: 36380020 DOI: 10.1208/s12248-022-00769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Prior to his passing, Dr. Roger Jelliffe, expressed the need for educating future physicians and clinical pharmacists on the availability of computer-based tools to support dose optimization in patients in stable or unstable physiological states. His perspectives were to be captured in a commentary for the AAPS J with a focus on incorporating population pharmacokinetic (PK)/pharmacodynamic (PD) models that are designed to hit the therapeutic target with maximal precision. Unfortunately, knowing that he would be unable to complete this project, Dr. Jelliffe requested that a manuscript conveying his concerns be completed upon his passing. With this in mind, this final installment of the AAPS J theme issue titled "Alternative Perspectives for Evaluating Drug Exposure Characteristics in a Population - Avoiding Analysis Pitfalls and Pigeonholes" is an effort to honor Dr. Jelliffe's request, conveying his concerns and the need to incorporate modeling and simulation into the training of physicians and clinical pharmacists. Accordingly, Dr. Jelliffe's perspectives have been integrated with those of the other three co-authors on the following topics: the clinical utility of population PK models; the role of multiple model (MM) dosage regimens to identify an optimal dose for an individual; tools for determining dosing regimens in renal dialysis patients (or undergoing other therapies that modulate renal clearance); methods to analyze and track drug PK in acutely ill patients presenting with high inter-occasion variability; implementation of a 2-cycle approach to minimize the duration between blood samples taken to estimate the changing PK in an acutely ill patient and for the generation of therapeutic decisions in advance for each dosing cycle based on an analysis of the previous cycle; and the importance of expressing therapeutic drug monitoring results as 1/variance rather than as the coefficient of variation. Examples showcase why, irrespective of the overall approach, the combination of therapeutic drug monitoring and computer-informed precision dosing is indispensable for maximizing the likelihood of achieving the target drug concentrations in the individual patient.
Collapse
Affiliation(s)
- Roger Jelliffe
- Laboratory of Applied Pharmacokinetics and Bioinformatics, University of Southern California School of Medicine, Children's Hospital of Los Angeles, 4650 Sunset Boulevard, #51, Los Angeles, California, 90027, USA
| | - Jiang Liu
- Division of Pharmacometrics, Office of Clinical Pharmacology, Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, 20993, USA
| | - George L Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Lake Nona, Florida, 32827, USA
| | - Marilyn N Martinez
- Office of New Animal Drugs, Center for Veterinary Medicine (CVM), US Food and Drug Administration (FDA), Rockville, Maryland, 20855, USA.
| |
Collapse
|
9
|
Jayanti RP, Long NP, Phat NK, Cho YS, Shin JG. Semi-Automated Therapeutic Drug Monitoring as a Pillar toward Personalized Medicine for Tuberculosis Management. Pharmaceutics 2022; 14:pharmaceutics14050990. [PMID: 35631576 PMCID: PMC9147223 DOI: 10.3390/pharmaceutics14050990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Standard tuberculosis (TB) management has failed to control the growing number of drug-resistant TB cases worldwide. Therefore, innovative approaches are required to eradicate TB. Model-informed precision dosing and therapeutic drug monitoring (TDM) have become promising tools for adjusting anti-TB drug doses corresponding with individual pharmacokinetic profiles. These are crucial to improving the treatment outcome of the patients, particularly for those with complex comorbidity and a high risk of treatment failure. Despite the actual benefits of TDM at the bedside, conventional TDM encounters several hurdles related to laborious, time-consuming, and costly processes. Herein, we review the current practice of TDM and discuss the main obstacles that impede it from successful clinical implementation. Moreover, we propose a semi-automated TDM approach to further enhance precision medicine for TB management.
Collapse
Affiliation(s)
- Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Nguyen Ky Phat
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 47392, Korea
- Correspondence: ; Tel.: +82-51-890-6709; Fax: +82-51-893-1232
| |
Collapse
|