1
|
Enhanced Wound Healing Potential of Spirulina platensis Nanophytosomes: Metabolomic Profiling, Molecular Networking, and Modulation of HMGB-1 in an Excisional Wound Rat Model. Mar Drugs 2023; 21:md21030149. [PMID: 36976198 PMCID: PMC10051127 DOI: 10.3390/md21030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Excisional wounds are considered one of the most common physical injuries. This study aims to test the effect of a nanophytosomal formulation loaded with a dried hydroalcoholic extract of S. platensis on promoting excisional wound healing. The Spirulina platensis nanophytosomal formulation (SPNP) containing 100 mg PC and 50 mg CH exhibited optimum physicochemical characteristics regarding particle size (598.40 ± 9.68 nm), zeta potential (−19.8 ± 0.49 mV), entrapment efficiency (62.76 ± 1.75%), and Q6h (74.00 ± 1.90%). It was selected to prepare an HPMC gel (SPNP-gel). Through metabolomic profiling of the algal extract, thirteen compounds were identified. Molecular docking of the identified compounds on the active site of the HMGB-1 protein revealed that 12,13-DiHome had the highest docking score of −7.130 kcal/mol. SPNP-gel showed higher wound closure potential and enhanced histopathological alterations as compared to standard (MEBO® ointment) and S. platensis gel in wounded Sprague-Dawley rats. Collectively, NPS promoted the wound healing process by enhancing the autophagy process (LC3B/Beclin-1) and the NRF-2/HO-1antioxidant pathway and halting the inflammatory (TNF-, NF-κB, TlR-4 and VEGF), apoptotic processes (AIF, Caspase-3), and the downregulation of HGMB-1 protein expression. The present study’s findings suggest that the topical application of SPNP-gel possesses a potential therapeutic effect in excisional wound healing, chiefly by downregulating HGMB-1 protein expression.
Collapse
|
2
|
Hsieh CH, Chou CC, Fang YC, Hsu PH, Chiu YH, Yang CS, Jow GM, Tang CY, Jeng CJ. 14-3-3 proteins regulate cullin 7-mediated Eag1 degradation. Cell Biosci 2023; 13:18. [PMID: 36717938 PMCID: PMC9885684 DOI: 10.1186/s13578-023-00969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Mutations in the human gene encoding the neuron-specific Eag1 (KV10.1; KCNH1) potassium channel are linked to congenital neurodevelopmental diseases. Disease-causing mutant Eag1 channels manifest aberrant gating function and defective protein homeostasis. Both the E3 ubiquitin ligase cullin 7 (Cul7) and the small acid protein 14-3-3 serve as binding partners of Eag1. Cul7 mediates proteasomal and lysosomal degradation of Eag1 protein, whereas over-expression of 14-3-3 notably reduces Eag1 channel activity. It remains unclear whether 14-3-3 may also contribute to Eag1 protein homeostasis. RESULTS In human cell line and native rat neurons, disruptions of endogenous 14-3-3 function with the peptide inhibitor difopein or specific RNA interference up-regulated Eag1 protein level in a transcription-independent manner. Difopein hindered Eag1 protein ubiquitination at the endoplasmic reticulum and the plasma membrane, effectively promoting the stability of both immature and mature Eag1 proteins. Suppression of endogenous 14-3-3 function also reduced excitotoxicity-associated Eag1 degradation in neurons. Difopein diminished Cul7-mediated Eag1 degradation, and Cul7 knock-down abolished the effect of difopein on Eag1. Inhibition of endogenous 14-3-3 function substantially perturbed the interaction of Eag1 with Cul7. Further structural analyses suggested that the intracellular Per-Arnt-Sim (PAS) domain and cyclic nucleotide-binding homology domain (CNBHD) of Eag1 are essential for the regulatory effect of 14-3-3 proteins. Significantly, suppression of endogenous 14-3-3 function reduced Cul7-mediated degradation of disease-associated Eag1 mutant proteins. CONCLUSION Overall these results highlight a chaperone-like role of endogenous 14-3-3 proteins in regulating Eag1 protein homeostasis, as well as a therapeutic potential of 14-3-3 modulators in correcting defective protein expression of disease-causing Eag1 mutants.
Collapse
Affiliation(s)
- Chang-Heng Hsieh
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Chia-Cheng Chou
- grid.36020.370000 0000 8889 3720National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Ya-Ching Fang
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.19188.390000 0004 0546 0241Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Po-Hao Hsu
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.19188.390000 0004 0546 0241Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Yi-Hung Chiu
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Chi-Sheng Yang
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Guey-Mei Jow
- grid.256105.50000 0004 1937 1063School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Yung Tang
- grid.19188.390000 0004 0546 0241Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Chung-Jiuan Jeng
- grid.260539.b0000 0001 2059 7017Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|