1
|
Wu H, Huang J, Wu H, Xu W, Zhong Q, Song J, Linghu X, Gao B, Wa Q. Enhancement of in vitro and in vivo bone repair performance of decalcified bone/gelma by desferrioxamine. Sci Rep 2025; 15:14092. [PMID: 40269226 DOI: 10.1038/s41598-025-99101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Autologous and allogeneic bone grafting is currently the clinical gold standard for the treatment of bone defects; however, it is limited by the scarcity of autologous sources and the risk of secondary trauma, as well as the complications of disease transmission and immune rejection associated with allogeneic grafts. The clinical management of bone defects remains a significant challenge. In this study, we prepared a demineralized bone matrix/gelatin methacrylate composite hydrogel loaded with deferoxamine (GelMA/DBM/DFO) using a freeze-drying method and investigated its properties. Assessments using CCK-8, live-dead fluorescence staining, alkaline phosphatase staining, and Alizarin Red staining indicated that the GelMA/DBM/DFO composite hydrogel demonstrated superior biocompatibility and in vitro osteogenic differentiation capacity compared with the GelMA/DBM composite hydrogel. We established a cranial defect model in Sprague-Dawley (SD) rats and examined peripheral blood indices, micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) staining, Masson's trichrome staining, and immunohistochemical staining for bone morphogenetic protein-2 (BMP-2) and collagen type I (COL-1). Both hydrogels exhibited good biosafety and the GelMA/DBM/DFO hydrogel showed more effective repair of cranial defects in SD rats. This study provides a novel material for bone-defect repair.
Collapse
Affiliation(s)
- Honghan Wu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China
| | - Hengpeng Wu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Weikang Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China
| | - Qian Zhong
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Jiaxiang Song
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Xitao Linghu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China.
| | - Qingde Wa
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China.
| |
Collapse
|
2
|
Salem NA, ElShebiney SA, Mabrouk M, Kishta MS, Galal AF, Osama L, Beherei HH. Enhanced bone regeneration using mesenchymal stem cell-loaded 3D-printed alginate-calcium Titanate scaffolds: A Calvarial defect model study. Int J Biol Macromol 2025; 302:140516. [PMID: 39892552 DOI: 10.1016/j.ijbiomac.2025.140516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
This study investigates the efficacy of a 3D-printed alginate composite scaffold enriched with calcium titanate nano powders and loaded with mesenchymal stem cells (MSCs) for bone regeneration in a calvarial defect model. Scaffolds (20 mm × 20 mm × 4.48 mm) with a slightly rough surface texture were fabricated using a bioprinter. A calvarial defect was created in the skulls of forty male Wistar rats, then divided into four treatment groups: empty defect, scaffold only, MSCs only, and MSC-seeded scaffold. After eight weeks, new bone formation was evaluated. The MSC-seeded scaffold group showed superior outcomes, including significantly higher bone mineral density (BMD), nearly complete defect closure in CT imaging, and enhanced histological results with newly formed bone and marrow cavities. Osteogenic gene markers (RunX2, OSX, COL1, BMP2, and OCN) and the angiogenic marker VEGF were notably upregulated, while the osteoclast-related gene RANKL was downregulated. These findings highlight the synergistic effect of the scaffold's osteoconductive properties and MSCs' regenerative potential. MSC-seeded alginate‑calcium titanate scaffold demonstrates promising results for critical-sized defect repair and may serve as a viable strategy for clinical bone tissue engineering applications.
Collapse
Affiliation(s)
- Neveen A Salem
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Shaimaa A ElShebiney
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, Giza, Egypt.
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Asmaa F Galal
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Lamyaa Osama
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, Giza, Egypt
| |
Collapse
|
3
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
4
|
Nguyen NTK, Lee SS, Chen PH, Chang YH, Pham NN, Chang CW, Pham DH, Ngo DKT, Dang QT, Truong VA, Truong VA, Chang YH, Hu YC. Enhanced Calvarial Bone Repair Using ASCs Engineered with RNA-Guided Split dCas12a System that Co-Activates Sox 5, Sox6, and Long Non-Coding RNA H19. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306612. [PMID: 38126683 DOI: 10.1002/smll.202306612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow-derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose-derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co-activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co-activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co-activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.
Collapse
Affiliation(s)
- Nuong Thi Kieu Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Shung Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Pin-Hsin Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Dang Huu Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Dung Kim Thi Ngo
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Quyen Thuc Dang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Vy Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
5
|
Lopez CD, Girard AO, Lake IV, Suresh V, Abdou H, Morrison JJ, Yang R, Gordon CR, Redett RJ. Skull and Scalp En-Bloc Harvest Protects Calvarial Perfusion: A Cadaveric Study. J Reconstr Microsurg 2024; 40:171-176. [PMID: 37146645 DOI: 10.1055/a-2087-2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Calvarial defects are severe injuries that can result from a wide array of etiologies. Reconstructive modalities for these clinical challenges include autologous bone grafting or cranioplasty with biocompatible alloplastic materials. Unfortunately, both approaches are limited by factors such as donor site morbidly, tissue availability, and infection. Calvarial transplantation offers the potential opportunity to address skull defect form and functional needs by replacing "like-with-like" tissue but remains poorly investigated. METHODS Three adult human cadavers underwent circumferential dissection and osteotomy to raise the entire scalp and skull en-bloc. The vascular pedicles of the scalp were assessed for patency and perfused with color dye, iohexol contrast agent for computed tomography (CT) angiography, and indocyanine green for SPY-Portable Handheld Imager assessment of perfusion to the skull. RESULTS Gross changes were appreciated to the scalp with color dye, but not to bone. CT angiography and SPY-Portable Handheld Imager assessment confirmed perfusion from the vessels of the scalp to the skull beyond midline. CONCLUSION Calvarial transplantation may be a technically viable option for skull defect reconstruction that requires vascularized composite tissues (bone and soft tissue) for optimal outcomes.
Collapse
Affiliation(s)
- Christopher D Lopez
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alisa O Girard
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isabel V Lake
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Visakha Suresh
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hossam Abdou
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Jonathan J Morrison
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Robin Yang
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chad R Gordon
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard J Redett
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Lopez CD, Girard AO, Lake IV, Suresh V, Abdou H, Morrison JJ, Yang R, Gordon CR, Redett RJ. Skull and Scalp En-Bloc Harvest Protects Calvarial Perfusion: A Cadaveric Study. J Reconstr Microsurg 2023. [PMID: 37406669 DOI: 10.1055/s-0043-1769508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
BACKGROUND Calvarial defects are severe injuries that can result from a wide array of etiologies. Reconstructive modalities for these clinical challenges include autologous bone grafting or cranioplasty with biocompatible alloplastic materials. Unfortunately, both approaches are limited by factors such as donor site morbidly, tissue availability, and infection. Calvarial transplantation offers the potential opportunity to address skull defect form and functional needs by replacing "like-with-like" tissue but remains poorly investigated. METHODS Three adult human cadavers underwent circumferential dissection and osteotomy to raise the entire scalp and skull en-bloc. The vascular pedicles of the scalp were assessed for patency and perfused with color dye, iohexol contrast agent for computed tomography (CT) angiography, and indocyanine green for SPY-Portable Handheld Imager assessment of perfusion to the skull. RESULTS Gross changes were appreciated to the scalp with color dye, but not to bone. CT angiography and SPY-Portable Handheld Imager assessment confirmed perfusion from the vessels of the scalp to the skull beyond midline. DISCUSSION/CONCLUSION Calvarial transplantation may be a technically viable option for skull defect reconstruction that requires vascularized composite tissues (bone and soft tissue) for optimal outcomes.
Collapse
Affiliation(s)
- Christopher D Lopez
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alisa O Girard
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isabel V Lake
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Visakha Suresh
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hossam Abdou
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Jonathan J Morrison
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Robin Yang
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chad R Gordon
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard J Redett
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Ulmeanu ME, Mateș IM, Doicin CV, Mitrică M, Chirteș VA, Ciobotaru G, Semenescu A. Bespoke Implants for Cranial Reconstructions: Preoperative to Postoperative Surgery Management System. Bioengineering (Basel) 2023; 10:bioengineering10050544. [PMID: 37237614 DOI: 10.3390/bioengineering10050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury is a leading cause of death and disability worldwide, with nearly 90% of the deaths coming from low- and middle-income countries. Severe cases of brain injury often require a craniectomy, succeeded by cranioplasty surgery to restore the integrity of the skull for both cerebral protection and cosmetic purposes. The current paper proposes a study on developing and implementing an integrative surgery management system for cranial reconstructions using bespoke implants as an accessible and cost-effective solution. Bespoke cranial implants were designed for three patients and subsequent cranioplasties were performed. Overall dimensional accuracy was evaluated on all three axes and surface roughness was measured with a minimum value of 2.209 μm for Ra on the convex and concave surfaces of the 3D-printed prototype implants. Improvements in patient compliance and quality of life were reported in postoperative evaluations of all patients involved in the study. No complications were registered from both short-term and long-term monitoring. Material and processing costs were lower compared to a metal 3D-printed implants through the usage of readily available tools and materials, such as standardized and regulated bone cement materials, for the manufacturing of the final bespoke cranial implants. Intraoperative times were reduced through the pre-planning management stages, leading to a better implant fit and overall patient satisfaction.
Collapse
Affiliation(s)
- Mihaela-Elena Ulmeanu
- Faculty of Industrial Engineering and Robotics, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
| | - Ileana Mariana Mateș
- Central Military Emergency University Hospital "Dr. Carol Davila", 010825 Bucharest, Romania
| | - Cristian-Vasile Doicin
- Faculty of Industrial Engineering and Robotics, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
| | - Marian Mitrică
- Central Military Emergency University Hospital "Dr. Carol Davila", 010825 Bucharest, Romania
| | - Vasile Alin Chirteș
- Central Military Emergency University Hospital "Dr. Carol Davila", 010825 Bucharest, Romania
| | - Georgian Ciobotaru
- Central Military Emergency University Hospital "Dr. Carol Davila", 010825 Bucharest, Romania
| | - Augustin Semenescu
- Faculty of Materials Science and Engineering, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| |
Collapse
|
8
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Lasunin NV, Abdullaev AN, Cherekaev VA, Okishev DN, Grigorieva NN, Kozlov AV. [Bone defect closure after resection of sphenoorbital meningioma]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:96-103. [PMID: 36763560 DOI: 10.17116/neiro20238701196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Sphenoorbital meningiomas (SOM) are a subgroup of skull base tumors with soft tissue component in the orbit and anterior and/or middle cranial fossa. According to different authors, SOMs account for 2-12% of all intracranial meningiomas. Reconstruction of bone defects after resection of SOM has own nuances. Along with cranial vault repair, patients encounter with cosmetic defects following facial skull lesion, ophthalmic symptoms due to orbital defects, dental and functional problems associated with opening of the mouth in case of damage to maxilla and mandible. Predominant infiltrative growth of tumor and common large bone defects involving various anatomical regions require multiple implants or implants with complex shape. Moreover, contact of implantation area with nasal cavity and paranasal sinuses requires additional impermeability of soft tissue reconstruction and inertness of materials. OBJECTIVE To summarize available modern data on bone defect closure after resection of SOM. MATERIAL AND METHODS The authors reviewed available data on bone defect closure after resection of SOM. Effectiveness of modern methods of reconstruction and safety of materials were assessed. RESULTS We analyzed 96 available references. Technical features of tumor resection, materials used for bone defect closure and modern possibilities of 3D technologies in reconstructive surgery were described. The authors proposed the algorithms for selecting the materials for bone defect closure after resection of SOM. CONCLUSION Improvement of surgical technique and development of new materials and technologies significantly improve cosmetic and functional results. A large percentage of negative ophthalmologic outcomes and high risk of complications in SOM surgery require further studies and elaboration of modern techniques.
Collapse
Affiliation(s)
- N V Lasunin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | - D N Okishev
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A V Kozlov
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
10
|
Zhao Q, Gao S. Poly (Butylene Succinate)/Silicon Nitride Nanocomposite with Optimized Physicochemical Properties, Biocompatibility, Degradability, and Osteogenesis for Cranial Bone Repair. J Funct Biomater 2022; 13:jfb13040231. [PMID: 36412871 PMCID: PMC9680472 DOI: 10.3390/jfb13040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Congenital disease, tumors, infections, and trauma are the main reasons for cranial bone defects. Herein, poly (butylene succinate) (PB)/silicon nitride (Si3N4) nanocomposites (PSC) with Si3N4 content of 15 w% (PSC15) and 30 w% (PSC30) were fabricated for cranial bone repair. Compared with PB, the compressive strength, hydrophilicity, surface roughness, and protein absorption of nanocomposites were increased with the increase in Si3N4 content (from 15 w% to 30 w%). Furthermore, the cell adhesion, multiplication, and osteoblastic differentiation on PSC were significantly enhanced with the Si3N4 content increasing in vitro. PSC30 exhibited optimized physicochemical properties (compressive strength, surface roughness, hydrophilicity, and protein adsorption) and cytocompatibility. The m-CT and histological results displayed that the new bone formation for SPC30 obviously increased compared with PB, and PSC30 displayed proper degradability (75.3 w% at 12 weeks) and was gradually replaced by new bone tissue in vivo. The addition of Si3N4 into PB not only optimized the surface performances of PSC but also improved the degradability of PSC, which led to the release of Si ions and a weak alkaline environment that significantly promoted cell response and tissue regeneration. In short, the enhancements of cellular responses and bone regeneration of PSC30 were attributed to the synergism of the optimized surface performances and slow release of Si ion, and PSC30 were better than PB. Accordingly, PSC30, with good biocompatibility and degradability, displayed a promising and huge potential for cranial bone construction.
Collapse
|
11
|
Guo J, Zhou F, Liu Z, Cao Y, Zhao W, Zhang Z, Zhai Q, Jin Y, Li B, Jin F. Exosome‐shuttled mitochondrial transcription factor A mRNA promotes the osteogenesis of dental pulp stem cells through mitochondrial oxidative phosphorylation activation. Cell Prolif 2022; 55:e13324. [DOI: 10.1111/cpr.13324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jia Guo
- Department of Orthodontics, School of Stomatology The Fourth Military Medical University Xi'an China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Feng Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Zhi Liu
- Department of Orthodontics, School of Stomatology The Fourth Military Medical University Xi'an China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Yuan Cao
- Department of Orthodontics, School of Stomatology The Fourth Military Medical University Xi'an China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Wanming Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Zheru Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Qiming Zhai
- Department of Orthodontics, School of Stomatology The Fourth Military Medical University Xi'an China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology The Fourth Military Medical University Xi'an China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| |
Collapse
|