1
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
2
|
Perri P, Sena G, Piro P, De Bartolo T, Galassi S, Costa D, Serra R. Onyx TMGel or Coil versus Hydrogel as Embolic Agents in Endovascular Applications: Review of the Literature and Case Series. Gels 2024; 10:312. [PMID: 38786229 PMCID: PMC11120993 DOI: 10.3390/gels10050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
This review focuses on the use of conventional gel or coil and "new" generation hydrogel used as an embolic agent in endovascular applications. In general, embolic agents have deep or multidistrict vascular penetration properties as they ensure complete occlusion of vessels by exploiting the patient's coagulation system, which recognises them as substances foreign to the body, thus triggering the coagulation cascade. This is why they are widely used in the treatment of endovascular corrections (EV repair), arteriovenous malformations (AVM), endoleaks (E), visceral aneurysms or pseudo-aneurysms, and embolisation of pre-surgical or post-surgical (iatrogenic) lesions. Conventional gels such as Onyx or coils are now commercially available, both of which are frequently used in endovascular interventional procedures, as they are minimally invasive and have numerous advantages over conventional open repair (OR) surgery. Recently, these agents have been modified and optimised to develop new embolic substances in the form of hydrogels based on alginate, chitosan, fibroin and other polymers to ensure embolisation through phase transition phenomena. The main aim of this work was to expand on the data already known in the literature concerning the application of these devices in the endovascular field, focusing on the advantages, disadvantages and safety profiles of conventional and innovative embolic agents and also through some clinical cases reported. The clinical case series concerns the correction and exclusion of endoleak type I or type II appeared after an endovascular procedure of exclusion of aneurysmal abdominal aortic (EVAR) with a coil (coil penumbra released by a LANTERN microcatheter), the exclusion of renal arterial malformation (MAV) with a coil (penumbra coil released by a LANTERN microcatheter) and the correction of endoleak through the application of Onyx 18 in the arteries where sealing by the endoprosthesis was not guaranteed.
Collapse
Affiliation(s)
- Paolo Perri
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (P.P.); (P.P.)
| | - Giuseppe Sena
- Department of Vascular Surgery, “Pugliese-Ciaccio” Hospital, 88100 Catanzaro, Italy;
| | - Paolo Piro
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (P.P.); (P.P.)
| | - Tommaso De Bartolo
- Departement of Interventional Radiology, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (T.D.B.); (S.G.)
| | - Stefania Galassi
- Departement of Interventional Radiology, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (T.D.B.); (S.G.)
| | - Davide Costa
- Interuniversity Center of Phlebolymphology (CIFL), Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Garcia Garcia C, Patkar SS, Wang B, Abouomar R, Kiick KL. Recombinant protein-based injectable materials for biomedical applications. Adv Drug Deliv Rev 2023; 193:114673. [PMID: 36574920 DOI: 10.1016/j.addr.2022.114673] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Injectable nanocarriers and hydrogels have found widespread use in a variety of biomedical applications such as local and sustained biotherapeutic cargo delivery, and as cell-instructive matrices for tissue engineering. Recent advances in the development and application of recombinant protein-based materials as injectable platforms under physiological conditions have made them useful platforms for the development of nanoparticles and tissue engineering matrices, which are reviewed in this work. Protein-engineered biomaterials are highly customizable, and they provide distinctly tunable rheological properties, encapsulation efficiencies, and delivery profiles. In particular, the key advantages of emerging technologies which harness the stimuli-responsive properties of recombinant polypeptide-based materials are highlighted in this review.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ramadan Abouomar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19176, USA.
| |
Collapse
|
4
|
Griswold E, Cappello J, Ghandehari H. Silk-elastinlike protein-based hydrogels for drug delivery and embolization. Adv Drug Deliv Rev 2022; 191:114579. [PMID: 36306893 DOI: 10.1016/j.addr.2022.114579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
Silk-Elastinlike Protein-Based Polymers (SELPs) can form thermoresponsive hydrogels that allow for the generation of in-situ drug delivery matrices. They are produced by recombinant techniques, enabling exact control of monomer sequence and polymer length. In aqueous solutions SELP strands form physical crosslinks as a function of temperature increase without the addition of crosslinking agents. Gelation kinetics, modulus of elasticity, pore size, drug release, biorecognition, and biodegradation of SELP hydrogels can be controlled by placement of amino acid residues at strategic locations in the polymer backbone. SELP hydrogels have been investigated for delivery of a variety of bioactive agents including small molecular weight drugs and fluorescent probes, oligomers of glycosaminoglycans, polymeric macromolecules, proteins, plasmid DNA, and viral gene delivery systems. In this review we provide a background for use of SELPs in matrix-mediated delivery and summarize recent investigations of SELP hydrogels for controlled delivery of bioactive agents as well as their use as liquid embolics.
Collapse
Affiliation(s)
- Ethan Griswold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center of Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph Cappello
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hamidreza Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center of Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|