1
|
Lu Y, Lu D, Li C, Chen L. Exploring Immune Cell Infiltration and Small Molecule Compounds for Ulcerative Colitis Treatment. Genes (Basel) 2024; 15:1548. [PMID: 39766817 PMCID: PMC11728156 DOI: 10.3390/genes15121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) with a relapsing nature and complex etiology. Bioinformatics analysis has been widely applied to investigate various diseases. This study aimed to identify crucial differentially expressed genes (DEGs) and explore potential therapeutic agents for UC. METHODS The GSE47908 and GSE55306 colon tissue transcriptome gene datasets were downloaded from the Gene Expression Omnibus-NCBI (GEO) database. GEO2R and Gene Set Enrichment Analysis (GSEA) were used to screen for DEGs in patients with UC compared to the normal population based on weighted gene co-expression network analysis (WGCNA). GO-BP analysis and KEGG enrichment analysis were performed on the intersecting differential genes via the Metascape website, while hub genes were analyzed by STRING11.0 and Cytoscape3.7.1. The expression of hub genes was verified in the dataset GSE38713 colon tissue specimens. Finally, the gene expression profiles of the validation set were analyzed by immuno-infiltration through the ImmuCellAI online tool, and the CMap database was used to screen for negatively correlated small molecule compounds. RESULTS A total of 595 and 926 genes were screened by analysis of GSE47908 and GSE55306 datasets, respectively. Combined WGCNA hub module intersection yielded 12 hub genes (CXCL8, IL1β, CXCL1, CCL20, CXCL2, CXCR2, LCN2, SELL, AGT, LILRB3, MMP3, IDO1) associated with the pathogenesis of UC. GSEA analysis yielded intersecting pathways for both datasets (colorectal cancer pathway, base excision repair, cell cycle, apoptosis). GO-BP and KEGG enrichment analyses were performed to obtain key biological processes (inflammatory response, response to bacteria, leukocyte activation involved in the immune response, leukocyte-cell adhesion, apoptosis, positive regulation of immune effector processes) and key signaling pathways (cytokine-cytokine receptor interactions, IBD, NOD-like receptor signaling pathways). The immune cell infiltration analysis suggested that the incidence of UC was mainly related to the increase in CD4+T cells, depletion of T cells, T follicular helper cells, natural killer cells, γδ T cells and the decrease in CD8 naive T cells, helper T cells 17 and effector T cells. The CMap database results showed that small molecule compounds such as vorinostat, roxarsone, and wortmannin may be therapeutic candidates for UC. CONCLUSIONS This study not only aids in early prediction and prevention but also provides novel insights into the pathogenesis and treatment of UC.
Collapse
Affiliation(s)
- Yi Lu
- Shanghai Tufeng Pharmaceutical Technology Co., Ltd., Shanghai 201203, China
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Dongqing Lu
- Department of Traditional Chinese Medicine, Beicai Community Health Service Center of Pudong New District, 271 Lianyuan Road, Pudong New District, Shanghai 201024, China
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- The M-Lab., Department of Precision Medicine, GROW—Research Institute for Oncology and Repro-Duction, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Luping Chen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
2
|
Situmorang PC, Ilyas S, Nugraha SE, Syahputra RA, Nik Abd Rahman NMA. Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Front Pharmacol 2024; 15:1387866. [PMID: 39104398 PMCID: PMC11298448 DOI: 10.3389/fphar.2024.1387866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer refers to the proliferation and multiplication of aberrant cells inside the human body, characterized by their capacity to proliferate and infiltrate various anatomical regions. Numerous biochemical pathways and signaling molecules have an impact on the cancer auto biogenesis process. The regulation of crucial cellular processes necessary for cell survival and proliferation, which are triggered by phytochemicals, is significantly influenced by signaling pathways. These pathways or components are regulated by phytochemicals. Medicinal plants are a significant reservoir of diverse anticancer medications employed in chemotherapy. The anticancer effects of phytochemicals are mediated by several methods, including induction of apoptosis, cessation of the cell cycle, inhibition of kinases, and prevention of carcinogenic substances. This paper analyzes the phytochemistry of seven prominent plant constituents, namely, alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins, focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death receptors, p53, p38, and actin dynamics. Hence, this review has examined a range of phytochemicals, encompassing their structural characteristics and potential anticancer mechanisms. It has underscored the significance of plant-derived bioactive compounds in the prevention of cancer, utilizing diverse molecular pathways. In addition, this endeavor also seeks to incentivize scientists to carry out clinical trials on anticancer medications derived from plants.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
3
|
Jabir MS, Al-Shammari AM, Ali ZO, Albukhaty S, Sulaiman GM, Jawad SF, Hamzah SS, Syed A, Elgorban AM, Eswaramoorthy R, Zaghloul NSS, Al-Dulimi AG, Najm MAA. Combined oncolytic virotherapy gold nanoparticles as synergistic immunotherapy agent in breast cancer control. Sci Rep 2023; 13:16843. [PMID: 37803068 PMCID: PMC10558528 DOI: 10.1038/s41598-023-42299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023] Open
Abstract
Combining viruses and nanoparticles may be a way to successfully treat cancer and minimize adverse effects. The current work aimed to evaluate the efficacy of a specific combination of gold nanoparticles (GNPs) and Newcastle disease virus (NDV) to enhance the antitumor effect of breast cancer in both in vitro and in vivo models. Two human breast cancer cell lines (MCF-7 and AMJ-13) and a normal epithelial cell line (HBL-100) were used and treated with NDV and/or GNPs. The MTT assay was used to study the anticancer potentials of NDV and GNP. The colony formation assay and apoptosis markers were used to confirm the killing mechanisms of NDV and GNP against breast cancer cell lines. p53 and caspase-9 expression tested by the qRT-PCR technique. Our results showed that combination therapy had a significant killing effect against breast cancer cells. The findings demonstrated that NDV and GNPs induced apoptosis in cancer cells by activating caspase-9, the p53 protein, and other proteins related to apoptosis, which holds promise as a combination therapy for breast cancer.
Collapse
Affiliation(s)
- Majid S Jabir
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, 10066, Iraq.
| | - Ahmed M Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad, Iraq.
| | - Zainab O Ali
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, 10066, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, 10066, Iraq.
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Babylon, Iraq
| | - Sawsan S Hamzah
- College of Dentistry, Department of Basic Sciences, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Abdallah M Elgorban
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, India
| | - Nouf S S Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK
| | - Ali G Al-Dulimi
- Department of Dentistry, Bilad Alrafidain University College, Diyala, 32001, Iraq
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
4
|
Ramachandran M, Vaccaro A, van de Walle T, Georganaki M, Lugano R, Vemuri K, Kourougkiaouri D, Vazaios K, Hedlund M, Tsaridou G, Uhrbom L, Pietilä I, Martikainen M, van Hooren L, Olsson Bontell T, Jakola AS, Yu D, Westermark B, Essand M, Dimberg A. Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. Cancer Cell 2023:S1535-6108(23)00136-8. [PMID: 37172581 DOI: 10.1016/j.ccell.2023.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Glioblastomas are aggressive brain tumors that are largely immunotherapy resistant. This is associated with immunosuppression and a dysfunctional tumor vasculature, which hinder T cell infiltration. LIGHT/TNFSF14 can induce high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), suggesting that its therapeutic expression could promote T cell recruitment. Here, we use a brain endothelial cell-targeted adeno-associated viral (AAV) vector to express LIGHT in the glioma vasculature (AAV-LIGHT). We found that systemic AAV-LIGHT treatment induces tumor-associated HEVs and T cell-rich TLS, prolonging survival in αPD-1-resistant murine glioma. AAV-LIGHT treatment reduces T cell exhaustion and promotes TCF1+CD8+ stem-like T cells, which reside in TLS and intratumoral antigen-presenting niches. Tumor regression upon AAV-LIGHT therapy correlates with tumor-specific cytotoxic/memory T cell responses. Our work reveals that altering vascular phenotype through vessel-targeted expression of LIGHT promotes efficient anti-tumor T cell responses and prolongs survival in glioma. These findings have broader implications for treatment of other immunotherapy-resistant cancers.
Collapse
Affiliation(s)
- Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Maria Georganaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Despoina Kourougkiaouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Konstantinos Vazaios
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Marie Hedlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Georgia Tsaridou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Miika Martikainen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Clinical Pathology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
5
|
Vargas E, Zhang F, Ben Hassine A, Ruiz-Valdepeñas Montiel V, Mundaca-Uribe R, Nandhakumar P, He P, Guo Z, Zhou Z, Fang RH, Gao W, Zhang L, Wang J. Using Cell Membranes as Recognition Layers to Construct Ultrasensitive and Selective Bioelectronic Affinity Sensors. J Am Chem Soc 2022; 144:17700-17708. [DOI: 10.1021/jacs.2c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eva Vargas
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Fangyu Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Amira Ben Hassine
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Victor Ruiz-Valdepeñas Montiel
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Rodolfo Mundaca-Uribe
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ponnusamy Nandhakumar
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Putian He
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Zhongyuan Guo
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
An update on novel therapeutic intervention in Rheumatoid arthritis. Int Immunopharmacol 2022; 109:108794. [DOI: 10.1016/j.intimp.2022.108794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
|
7
|
Stoica SI, Onose G, Hoteteu M, Munteanu C. Effects of ethanol and deferoxamine on rat primary glial cell cultures, in regard with ischemia induced by traumatic spinal cord injury. BALNEO AND PRM RESEARCH JOURNAL 2022. [DOI: 10.12680/balneo.2022.502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although they have been regarded, in the past, as passive support cells, many experimental data have shown that glial cells play a critical role in the development and functioning of the nervous system. Despite the advances that have been made in understanding astrocytes' role in the nervous system's development and function, our knowledge of their interactions with other cells is still limited, albeit neurons are dependent on the trophic support provided by astrocytes release. Materials and Methods. The use of the McCarthy and de Vellis methods for isolating glial cells has been regarded as an essential tool for studying their function. This study aims to evaluate the effects of ethanol and deferoxamine on primary rat glial cell cultures and try to explain, as far as possible, the relevance of such effects for patients with chronic alcoholism and traumatic spinal cord injuries. Discussion. Because glial cells are very important in the functioning of the central nervous system and experiments cannot be performed on human primary nerve cell cultures, we performed an experiment on glial cells harvested from the newborn rat, analyzing the dynamics of IL-6 and TNF alpha on models of suffering in spinal cord injury (hypoxia and thermally stress). Conclusion. Inhibition of TNF alpha synthesis was more important at 7 days posttraumatic in cells with prolonged ethanolic exposure, even if protein levels of IL-6 were elevated (under similar experimental conditions). Thus, we can say that long-term exposure to ethanol of nerve cells can ensure a favorable evolution of medical recovery (by increasing TNF alpha), even if the inflammatory process remains active (shown by elevated IL-6 values).
Keywords: ethyl alcohol, deferoxamine, primary glial cells cultures, traumatic Spinal Cord Injury
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- University of Medicine and Pharmacy "Carol Davila" (UMPCD), Bucharest, Romania 2. Teaching Emergency Hospital "Bagdasar-Arseni" (TEHBA), Bucharest, Romania
| | - Gelu Onose
- University of Medicine and Pharmacy "Carol Davila" (UMPCD), Bucharest, Romania 2. Teaching Emergency Hospital "Bagdasar-Arseni" (TEHBA), Bucharest, Romania
| | - Mihail Hoteteu
- Department of Research, Biosafety Ltd, Bucharest, Romania
| | - Constantin Munteanu
- Teaching Emergency Hospital "Bagdasar-Arseni" (TEHBA), Bucharest, Romania 3. Department of Research, Biosafety Ltd, Bucharest, Romania 4. University of Medicine and Pharmacy “Grigore T. Popa”, Iași, Romania
| |
Collapse
|
8
|
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 2022; 14:395. [PMID: 35214127 PMCID: PMC8875250 DOI: 10.3390/pharmaceutics14020395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin, the most famous anti-malaria drug initially extracted from Artemisia annua L., also exhibits anti-tumor properties in vivo and in vitro. To improve its solubility and bioavailability, multiple derivatives have been synthesized. However, to reveal the anti-tumor mechanism and improve the efficacy of these artemisinin-type drugs, studies have been conducted in recent years. In this review, we first provide an overview of the effect of artemisinin-type drugs on the regulated cell death pathways, which may uncover novel therapeutic approaches. Then, to overcome the shortcomings of artemisinin-type drugs, we summarize the recent advances in two different therapeutic approaches, namely the combination therapy with biologics influencing regulated cell death, and the use of nanocarriers as drug delivery systems. For the former approach, we discuss the superiority of combination treatments compared to monotherapy in tumor cells based on their effects on regulated cell death. For the latter approach, we give a systematic overview of nanocarrier design principles used to deliver artemisinin-type drugs, including inorganic-based nanoparticles, liposomes, micelles, polymer-based nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers and niosomes. Both approaches have yielded promising findings in vitro and in vivo, providing a strong scientific basis for further study and upcoming clinical trials.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| |
Collapse
|