1
|
Ahmed SR, Uttra AM, Usman M, Qasim S, Jahan S, Roman M, Khojah H, Hendawy O, Rashwan EK. Deciphering farnesol's anti-arthritic and immunomodulatory potential by targeting multiple pathways: a combination of network pharmacology guided exploration and experimental verification. J Pharm Pharmacol 2025; 77:127-141. [PMID: 39374956 DOI: 10.1093/jpp/rgae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVE Farnesol (FAR), a sesquiterpene alcohol, has documented FAR's anti-inflammatory and antioxidant activities. Current study was undertaken to assess the efficacy and mechanism of FAR in arthritis by employing network pharmacology and experimental models. METHODS Two experimental models comprising formaldehyde- and complete Freund's adjuvant (CFA)-induced arthritis evaluated the efficacy of FAR in treating arthritis. Various parameters were assessed. Then, a network pharmacology approach was applied to gain further insight into the potential mechanism and signaling pathways. KEY FINDINGS FAR significantly reduced paw volume and the arthritic score and improved the hematological and biochemical changes. Radiographic and histological examination showed the anti-arthritic efficacy of FAR, which was associated with down-regulation of pro-inflammatory mediators and upregulation of anti-inflammatory mediators. Network pharmacology analysis revealed that FAR may exert its anti-arthritic effects by targeting specific genes associated with arthritis. Pathway analysis revealed the involvement of three key signaling pathways (IL-17 signaling, TNF signaling, and toll-like receptor signaling) in the development and progression of arthritis. CONCLUSIONS The results pointed out the protective attributes of farnesol against formaldehyde and CFA-induced arthritis via modulation of multiple targets. This study provides a valuable reference for the development of a new treatment or complementary therapy for arthritis.
Collapse
Affiliation(s)
- Shaimaa R Ahmed
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ambreen Malik Uttra
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Usman
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Sumera Qasim
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore 54600, Pakistan
| | - Muhammad Roman
- Department of Immunology, University of Health Sciences, Lahore 54600, Pakistan
| | - Hanan Khojah
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Omnia Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakaka 72341, Saudi Arabia
| |
Collapse
|
2
|
Chen X, Liu W, Su C, Shan J, Li X, Chai Y, Yu Y, Wen G. Multimodal effects of an extracellular matrix on cellular morphology, dynamics and functionality. J Mater Chem B 2024; 12:7946-7958. [PMID: 39041314 DOI: 10.1039/d4tb00360h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Articular cartilage defects can lead to pain and even disability in patients and have significant socioeconomic loss. Repairing articular cartilage defects remains a long-term challenge in medicine owing to the limited ability of cartilage to regenerate. At present, the treatment methods adopted in clinical practice have many limitations, thereby necessitating the rapid development of biomaterials. Among them, decellularized biomaterials have been particularly prominent, with numerous breakthroughs in research progress and translational applications. Although many studies show that decellularized cartilage biomaterials promote tissue regeneration, any differences in cellular morphology, dynamics, and functionality among various biomaterials upon comparison have not been reported. In this study, we prepared cartilage-derived extracellular matrix (cdECM) biomaterials with different bioactive contents and various physical properties to compare their effects on the morphology, dynamics and functionality of chondrocytes. This cellular multimodal analysis of the characteristics of cdECM biomaterials provided a theoretical basis for understanding the interactions between biomaterials and cells, thus laying an experimental foundation for the translation and application of decellularized cartilage biomaterials in the treatment of cartilage defects.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhao Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chi Su
- Deyang Hospital of Integrated Traditional Chinese and Western Medicine, Sichuan, 618000, China
| | - Jianyang Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xiang Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
3
|
Li S, Wang R, Huang L, Jiang Y, Xing F, Duan W, Cen Y, Zhang Z, Xie H. Promotion of diced cartilage survival and regeneration with grafting of small intestinal submucosa loaded with urine-derived stem cells. Cell Prolif 2024; 57:e13542. [PMID: 37723928 PMCID: PMC10849789 DOI: 10.1111/cpr.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
Cartilage absorption and calcification are prone to occur after the implantation of diced cartilage wrapped with autologous materials, as well as prolong the operation time, aggravate surgical trauma and postoperative pain during the acquisition process. Small intestinal submucosa (SIS) has suitable toughness and excellent degradability, which has been widely used in the clinic. Urine-derived stem cells (USCs), as a new type of stem cells, have multi-directional differentiation potential. In this study, we attempt to create the tissue engineering membrane material, termed USCs-SIS (U-SIS), and wrap the diced cartilage with it, assuming that they can promote the survival and regeneration of cartilage. In this study, after co-culture with the SIS and U-SIS, the proliferation, migration and chondrogenesis ability of the auricular-derived chondrocyte cells (ACs) were significantly improved. Further, the expression levels of chondrocyte phenotype-related genes were up-regulated, whilst that of dedifferentiated genes was down-regulated. The signal pathway proteins (Wnt3a and Wnt5a) were also participated in regulation of chondrogenesis. In vivo, compared with perichondrium, the diced cartilage wrapped with the SIS and U-SIS attained higher survival rate, less calcification and absorption in both short and long terms. Particularly, USCs promoted chondrogenesis and modulated local immune responses via paracrine pathways. In conclusion, SIS have the potential to be a new choice of membrane material for diced cartilage graft. U-SIS can enhance survival and regeneration of diced cartilage as a bioactive membrane material.
Collapse
Affiliation(s)
- Shang Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Plastic and Burn Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Medical Cosmetic Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Liping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yanlin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Weiqiang Duan
- Department of Plastic and Burn Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu HospitalSichuan UniversityChengduSichuanChina
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu HospitalSichuan UniversityChengduSichuanChina
| | - Huiqi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuanChina
| |
Collapse
|
4
|
Wang Y, Wu Z, Yan G, Li S, Zhang Y, Li G, Wu C. The CREB1 inhibitor 666-15 maintains cartilage homeostasis and mitigates osteoarthritis progression. Bone Joint Res 2024; 13:4-18. [PMID: 38163445 PMCID: PMC10758301 DOI: 10.1302/2046-3758.131.bjr-2023-0016.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Aims cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect. Methods CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Results CREB1 was hyperactive in osteoarthritic articular cartilage, interleukin (IL)-1β-treated cartilage explants, and IL-1β- or carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-treated chondrocytes. 666-15 enhanced cell viability of OA-like chondrocytes and alleviated IL-1β- or CCCP-induced chondrocyte injury through inhibition of mitochondrial dysfunction-associated apoptosis. Moreover, inhibition of CREB1 by 666-15 suppressed expression of ADAMTS4. Additionally, 666-15 alleviated joint degeneration in an ACLT mouse model. Conclusion Hyperactive CREB1 played a critical role in OA development, and 666-15 exerted anti-IL-1β or anti-CCCP effects in vitro as well as joint-protective effects in vivo. 666-15 may therefore be used as a promising anti-OA drug.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular Orthopedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhimin Wu
- Department of Molecular Orthopedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Guoqiang Yan
- National Center for Orthopaedics, Animal Laboratory, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Shan Li
- Department of Molecular Orthopedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yanzhuo Zhang
- Department of Molecular Orthopedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Guangping Li
- National Center for Orthopaedics, Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Chengai Wu
- Department of Molecular Orthopedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Chen CY, Kuo SM, Wu GX, Yang SW. Synergistic prevention and reparative effects of sesquiterpene farnesol in a rabbit model of surgical resection-induced osteoarthritis. APL Bioeng 2023; 7:016105. [PMID: 36647547 PMCID: PMC9840532 DOI: 10.1063/5.0129530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Articular cartilage may regenerate poorly after injury or during aging. In vitro, farnesol can modulate extracellular matrix synthesis and restore chondrocyte phenotypes by increasing type II collagen (COL II) and glycosaminoglycan (GAG) production. Here, we evaluated farnesol's preventive and reparative effects against osteoarthritis (OA) in vivo. We induced OA in rabbits through resection of the lateral collateral ligament and meniscus. After 2 weeks, the affected limb was treated with 0.5 ml of 0.4 mM farnesol, hyaluronan (HA) nanoparticle-encapsulated 0.8 mM farnesol (Farn/HA), or HA nanoparticles intra-articularly. After 2 and 6 treatment weeks, synovial inflammatory cytokine levels were analyzed. We also removed the entire joint cartilage from lateral femoral condyles for histological investigation. The half-maximum inhibitory concentration of farnesol was 0.5 mM. Farn/HA had relatively low cytotoxicity showing cells remained viable after being treated with 1 mM a concentration Farn/HA. Untreated lateral condyle exhibited extensive wear. By contrast, 0.4 mM farnesol or 0.8 mM Farn/HA led to a relatively transparent and bright appearance. After 2 and 6 treatment weeks, farnesol, particularly 0.8 mM Farn/HA, reduced matrix metalloproteinase 1 and 13 levels considerably. Therefore, 0.8 mM Farn/HA, which enabled slow drug release, demonstrated the highest anti-inflammatory and OA preventive effects. After 6 treatment weeks, farnesol also promoted COL II and GAG synthesis and, thus, aided healing.
Collapse
Affiliation(s)
| | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Guan Xuan Wu
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Shan Wei Yang
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung Veterans General Hospital, Kaohsiung City 81346, Taiwan,Author to whom correspondence should be addressed:. Tel.: 887 7 342 2121. ext. 73048. Fax: 886 7 342 2228
| |
Collapse
|