1
|
Díaz E, Quezada V, Cifuentes J, Arias Morales NY, Reyes LH, Muñoz-Camargo C, Cruz JC. Enhanced Delivery and Potency of Chemotherapeutics in Melanoma Treatment via Magnetite Nanobioconjugates. ACS OMEGA 2024; 9:45402-45420. [PMID: 39554413 PMCID: PMC11561594 DOI: 10.1021/acsomega.4c07415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
Melanoma, known for its aggressive metastatic potential, poses significant treatment challenges. Despite the potent antiproliferative effects of anticancer drugs, systemic toxicity and low water solubility limit their efficacy. This study addresses these challenges by employing magnetite (Fe3O4) nanobioconjugates as a drug delivery system, aimed at enhancing drug solubility and reducing off-target effects in melanoma therapy. Magnetite nanoparticles (MNPs) were engineered with functional molecules and loaded with the anticancer agents Temozolomide (TMZ) or paclitaxel (PTX). The nanobioconjugates were characterized via Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The results validated the efficacious synthesis and drug loading, attaining efficiencies ranging from 32 to 72% for TMZ and 32 to 60% for PTX. Biocompatibility assessments demonstrated excellent tolerance, with minimal hemolysis rates and platelet aggregation. In vitro studies revealed enhanced cytotoxicity against A-375 human melanoma cells compared to free drugs, with cellular uptake facilitated primarily through macropinocytosis, caveolin-, and clathrin-mediated endocytosis. Furthermore, the nanobioconjugates exhibited significant efficacy in targeting A-375 melanoma spheroids, underlining their potential in melanoma therapy. This research underscores magnetite nanobioconjugates as a promising avenue for targeted melanoma treatment, offering enhanced drug delivery specificity and reduced systemic toxicity in oncological drug delivery systems.
Collapse
Affiliation(s)
- Erika Díaz
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Valentina Quezada
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Javier Cifuentes
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Nydia Yadira Arias Morales
- Center
for Microscopy (MicroCore), Vice Presidency for Research and Creation, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Product
and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | | | - Juan C. Cruz
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| |
Collapse
|
2
|
Rodríguez CF, Guzmán-Sastoque P, Muñoz-Camargo C, Reyes LH, Osma JF, Cruz JC. Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA. MICROMACHINES 2024; 15:1057. [PMID: 39203709 PMCID: PMC11356012 DOI: 10.3390/mi15081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024]
Abstract
Superparamagnetic iron oxide micro- and nanoparticles have significant applications in biomedical and chemical engineering. This study presents the development and evaluation of a novel low-cost microfluidic device for the purification and hyperconcentration of these magnetic particles. The device, fabricated using laser ablation of polymethyl methacrylate (PMMA), leverages precise control over fluid dynamics to efficiently separate magnetic particles from non-magnetic ones. We assessed the device's performance through Multiphysics simulations and empirical tests, focusing on the separation of magnetite nanoparticles from blue carbon dots and magnetite microparticles from polystyrene microparticles at various total flow rates (TFRs). For nanoparticle separation, the device achieved a recall of up to 93.3 ± 4% and a precision of 95.9 ± 1.2% at an optimal TFR of 2 mL/h, significantly outperforming previous models, which only achieved a 50% recall. Microparticle separation demonstrated an accuracy of 98.1 ± 1% at a TFR of 2 mL/h in both simulations and experimental conditions. The Lagrangian model effectively captured the dynamics of magnetite microparticle separation from polystyrene microparticles, with close agreement between simulated and experimental results. Our findings underscore the device's robust capability in distinguishing between magnetic and non-magnetic particles at both micro- and nanoscales. This study highlights the potential of low-cost, non-cleanroom manufacturing techniques to produce high-performance microfluidic devices, thereby expanding their accessibility and applicability in various industrial and research settings. The integration of a continuous magnet, as opposed to segmented magnets in previous designs, was identified as a key factor in enhancing magnetic separation efficiency.
Collapse
Affiliation(s)
- Cristian F. Rodríguez
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (P.G.-S.); (C.M.-C.); (J.F.O.)
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, University of Antioquia, Medellin 050010, Colombia
| | - Paula Guzmán-Sastoque
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (P.G.-S.); (C.M.-C.); (J.F.O.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (P.G.-S.); (C.M.-C.); (J.F.O.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia;
| | - Johann F. Osma
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (P.G.-S.); (C.M.-C.); (J.F.O.)
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (P.G.-S.); (C.M.-C.); (J.F.O.)
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia;
| |
Collapse
|
3
|
Rodríguez CF, Báez-Suárez M, Muñoz-Camargo C, Reyes LH, Osma JF, Cruz JC. Zweifach-Fung Microfluidic Device for Efficient Microparticle Separation: Cost-Effective Fabrication Using CO 2 Laser-Ablated PMMA. MICROMACHINES 2024; 15:932. [PMID: 39064443 PMCID: PMC11278838 DOI: 10.3390/mi15070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Microfluidic separators play a pivotal role in the biomedical and chemical industries by enabling precise fluid manipulations. Traditional fabrication of these devices typically requires costly cleanroom facilities, which limits their broader application. This study introduces a novel microfluidic device that leverages the passive Zweifach-Fung principle to overcome these financial barriers. Through Lagrangian computational simulations, we optimized an eleven-channel Zweifach-Fung configuration that achieved a perfect 100% recall rate for particles following a specified normal distribution. Experimental evaluations determined 2 mL/h as the optimal total flow rate (TFR), under which the device showcased exceptional performance enhancements in precision and recall for micrometer-sized particles, achieving an overall accuracy of 94% ± 3%. Fabricated using a cost-effective, non-cleanroom method, this approach represents a significant shift from conventional practices, dramatically reducing production costs while maintaining high operational efficacy. The cost of each chip is less than USD 0.90 cents and the manufacturing process takes only 15 min. The development of this device not only makes microfluidic technology more accessible but also sets a new standard for future advancements in the field.
Collapse
Affiliation(s)
- Cristian F. Rodríguez
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (M.B.-S.); (C.M.-C.); (J.F.O.)
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Cl. 62 No. 52-59, Medellin 050010, Colombia
| | - Mateo Báez-Suárez
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (M.B.-S.); (C.M.-C.); (J.F.O.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (M.B.-S.); (C.M.-C.); (J.F.O.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia;
| | - Johann F. Osma
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (M.B.-S.); (C.M.-C.); (J.F.O.)
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (M.B.-S.); (C.M.-C.); (J.F.O.)
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia;
| |
Collapse
|
4
|
Constantinou C, Meliou K, Skouras A, Siafaka P, Christodoulou P. Liposomes against Alzheimer's Disease: Current Research and Future Prospects. Biomedicines 2024; 12:1519. [PMID: 39062092 PMCID: PMC11275096 DOI: 10.3390/biomedicines12071519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease, the most common neurodegenerative disease, affects more than 60 million people worldwide, a number that is estimated to double by 2050. Alzheimer's disease is characterized by progressive memory loss, the impairment of behavior, and mood changes, as well as the disturbed daily routine of the patient. Although there are some active molecules that can be beneficial by halting the progression of the disease, the blood-brain barrier and other physiological barriers hinder their delivery and, consequently, the appropriate management of the disease. Therefore, drug delivery systems that effectively target and overcome the blood-brain barrier to reach the targeted brain area would improve treatment effectiveness. Liposomes are lipophilic carriers that consist of a phospholipid bilayer structure, simulating the physiological lipidic layer of the blood-brain barrier and enabling better delivery of the drug to the brain. Given that pure liposomes may have less targeting affinity than functionalized liposomes, modification with groups such as lactoferrin, poly(ethylene glycol), and transferrin may improve specificity. In this mini-review, we summarize the literature on the use of liposomes for the treatment of Alzheimer's disease, focusing on the functionalization moieties of liposomes. In addition, challenges in brain delivery are also discussed.
Collapse
Affiliation(s)
- Christiana Constantinou
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | - Katerina Meliou
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | - Athanasios Skouras
- Department of Nursing, Faculty of Health Sciences, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece;
| | - Panoraia Siafaka
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | | |
Collapse
|
5
|
Lebrón JA, Ostos FJ, Martínez-Santa M, García-Moscoso F, López-López M, Moyá ML, Bernal E, Bachiller S, González-Ulloa G, Rodríguez-Lucena D, Lopes-Costa T, Fernández-Torres R, Ruiz-Mateos E, Pedrosa JM, Rafii-El-Idrissi Benhnia M, López-Cornejo P. Biocompatible metal-organic frameworks as promising platforms to eradicate HIV reservoirs ex vivo in people living with HIV. J Mater Chem B 2024; 12:5220-5237. [PMID: 38695162 DOI: 10.1039/d4tb00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The HIV attacks the immune system provoking an infection that is considered a global health challenge. Despite antiretroviral treatments being effective in reducing the plasma viral load in the blood to undetectable levels in people living with HIV (PLWH), the disease is not cured and has become chronic. This happens because of the existence of anatomical and cellular viral reservoirs, mainly located in the lymph nodes and gastrointestinal tract, which are composed of infected CD4+ T cells with a resting memory phenotype and inaccessible to antiretroviral therapy. Herein, a new therapeutic strategy based on nanotechnology is presented. Different combinations of antiretroviral drugs (bictegravir/tenofovir/emtricitabine and nevirapine/tenofovir/emtricitabine) and toll-like receptor agonists were encapsulated into metal-organic frameworks (MOFs) PCN-224 and ZIF-8. The encapsulation efficiencies of all the drugs, as well as their release rate from the carriers, were measured. In vitro studies about the cell viability, the hemocompatibility, and the platelet aggregation of the MOFs were carried out. Epifluorescence microscopy assays confirmed the ability of ZIF-8 to target a carboxyfluorescein probe inside HeLa cell lines and PBMCs. These results pave the way for the use of these structures to eliminate latent HIV reservoirs from anatomical compartments through the activation of innate immune cells, and a higher efficacy of the triplet combinations of antiretroviral drugs.
Collapse
Affiliation(s)
- José A Lebrón
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Francisco J Ostos
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - Marta Martínez-Santa
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Francisco García-Moscoso
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Manuel López-López
- Department of Chemical Engineering, Physical Chemistry and Materials Science, Campus 'El Carmen', Faculty of Experimental Sciences, University of Huelva, 21071, Huelva, Spain
| | - María L Moyá
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Eva Bernal
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Sara Bachiller
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - Gabriel González-Ulloa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - David Rodríguez-Lucena
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Tania Lopes-Costa
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González, 1, 41012, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - José M Pedrosa
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Mohammed Rafii-El-Idrissi Benhnia
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - Pilar López-Cornejo
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| |
Collapse
|
6
|
Mehraji S, DeVoe DL. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities. LAB ON A CHIP 2024; 24:1154-1174. [PMID: 38165786 DOI: 10.1039/d3lc00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic technologies are revolutionizing the synthesis of nanoscale lipid particles and enabling new opportunities for the production of lipid-based nanomedicines. By harnessing the benefits of microfluidics for controlling diffusive and advective transport within microfabricated flow cells, microfluidic platforms enable unique capabilities for lipid nanoparticle synthesis with precise and tunable control over nanoparticle properties. Here we present an assessment of the current state of microfluidic technologies for lipid-based nanoparticle and nanomedicine production. Microfluidic techniques are discussed in the context of conventional production methods, with an emphasis on the capabilities of microfluidic systems for controlling nanoparticle size and size distribution. Challenges and opportunities associated with the scaling of manufacturing throughput are discussed, together with an overview of emerging microfluidic methods for lipid nanomedicine post-processing. The impact of additive manufacturing on current and future microfluidic platforms is also considered.
Collapse
Affiliation(s)
- Sima Mehraji
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Gimondi S, Ferreira H, Reis RL, Neves NM. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS NANO 2023; 17:14205-14228. [PMID: 37498731 PMCID: PMC10416572 DOI: 10.1021/acsnano.3c01117] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The use of nanoparticles (NPs) in nanomedicine holds great promise for the treatment of diseases for which conventional therapies present serious limitations. Additionally, NPs can drastically improve early diagnosis and follow-up of many disorders. However, to harness their full capabilities, they must be precisely designed, produced, and tested in relevant models. Microfluidic systems can simulate dynamic fluid flows, gradients, specific microenvironments, and multiorgan complexes, providing an efficient and cost-effective approach for both NPs synthesis and screening. Microfluidic technologies allow for the synthesis of NPs under controlled conditions, enhancing batch-to-batch reproducibility. Moreover, due to the versatility of microfluidic devices, it is possible to generate and customize endless platforms for rapid and efficient in vitro and in vivo screening of NPs' performance. Indeed, microfluidic devices show great potential as advanced systems for small organism manipulation and immobilization. In this review, first we summarize the major microfluidic platforms that allow for controlled NPs synthesis. Next, we will discuss the most innovative microfluidic platforms that enable mimicking in vitro environments as well as give insights into organism-on-a-chip and their promising application for NPs screening. We conclude this review with a critical assessment of the current challenges and possible future directions of microfluidic systems in NPs synthesis and screening to impact the field of nanomedicine.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| |
Collapse
|
8
|
Jin Y, Yu W, Zhang W, Wang C, Liu Y, Yuan WE, Feng Y. A novel fluorinated polyethyleneimine with microRNA-942-5p-sponges polyplex gene delivery system for non-small-cell lung cancer therapy. J Colloid Interface Sci 2023; 648:287-298. [PMID: 37301153 DOI: 10.1016/j.jcis.2023.05.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Gene delivery for non-small-cell lung cancer treatment has been a challenge due to low nucleic acid binding ability, cell-wall barrier, and high cytotoxicity. Cationic polymers, such as the traditional "golden standard" polyethyleneimine (PEI) 25 kDa have emerged as a promising carrier for non-coding RNA delivery. However, the high cytotoxicity associated with its high molecular weight has limited its application in gene delivery. To address this limitation, herein, we designed a novel delivery system using fluorine-modified polyethyleneimine (PEI) 1.8 kDa for microRNA-942-5p-sponges non-coding RNA delivery. Compared to PEI 25 kDa, this novel gene delivery system demonstrated an approximately six-fold enhancement in endocytosis capability and maintain a higher cell viability. In vivo studies also showed good biosafety and anti-tumor effects, attribute to the positive charge of PEI and the hydrophobic and oleophobic properties of the fluorine-modified group. This study provides an effective gene delivery system for non-small-cell lung cancer treatment.
Collapse
Affiliation(s)
- Yi Jin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Wang
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Kunming University of Science and Technology, Kunming, China
| | - Yao Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China., National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yun Feng
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
9
|
Cifuentes J, Cifuentes-Almanza S, Ruiz Puentes P, Quezada V, González Barrios AF, Calderón-Peláez MA, Velandia-Romero ML, Rafat M, Muñoz-Camargo C, Albarracín SL, Cruz JC. Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson's disease. Front Bioeng Biotechnol 2023; 11:1181842. [PMID: 37214285 PMCID: PMC10196638 DOI: 10.3389/fbioe.2023.1181842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD.
Collapse
Affiliation(s)
- Javier Cifuentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | | | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
10
|
Jiang T, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert Opin Drug Deliv 2023; 20:523-540. [PMID: 37017558 PMCID: PMC10164135 DOI: 10.1080/17425247.2023.2200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Despite gene therapy is ideal for genetic abnormality-related diseases, the easy degradation, poor targeting, and inefficiency in entering targeted cells are plaguing the effective delivery of gene therapy. Viral and non-viral vectors have been used for delivering gene therapeutics in vivo by safeguarding nucleic acid agents to target cells and to reach the specific intracellular location. A variety of nanotechnology-enabled safe and efficient systems have been successfully developed to improve the targeting ability for effective therapeutic delivery of genetic drugs. AREAS COVERED In this review, we outline the multiple biological barriers associated with gene delivery process, and highlight recent advances to gene therapy strategy in vivo, including gene correction, gene silencing, gene activation and genome editing. We point out current developments and challenges exist of non-viral and viral vector systems in association with chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION This review focuses on the opportunities and challenges to various gene therapy strategy, with specific emphasis on overcoming the challenges through the development of biocompatibility and smart gene vectors for potential clinical application.
Collapse
Affiliation(s)
- Tong Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
11
|
Jeshvaghani PA, Pourmadadi M, Yazdian F, Rashedi H, Khoshmaram K, Nigjeh MN. Synthesis and characterization of a novel, pH-responsive sustained release nanocarrier using polyethylene glycol, graphene oxide, and natural silk fibroin protein by a green nano emulsification method to enhance cancer treatment. Int J Biol Macromol 2023; 226:1100-1115. [PMID: 36435465 DOI: 10.1016/j.ijbiomac.2022.11.226] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
In this study, for the first time, by employing a simple and efficient double nano-emulsification method and using sweet almond oil as the organic phase, polyethylene glycol (PEG)/graphene oxide (GO)/silk fibroin (SF) hydrogel-nanocomposite was synthesized. The aim of the research was to fabricate a biocompatible targeted pH-sensitive sustained release carrier, improve the drug loading capacity and enhance the anticancer effect of doxorubicin (DOX) drug. The obtained values for the entrapment (%EE) and loading efficacy (%LE) were 87.75 ± 0.7 % and 46 ± 1 %, respectively, and these high values were due to the use of GO with a large specific surface area and the electrostatic interaction between the drug and SF. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses confirmed the presence of all the components in the nanocomposite and the suitable interaction between them. Based on the results of dynamic light scattering analysis (DLS) and zeta potential analysis, the mean size of the carrier particles and its surface charge were 293.7 nm and -102.9 mV, respectively. The high negative charge was caused by the presence of hydroxyl groups in GO and SF and it caused proper stability of the nanocomposite. The spherical core-shell structure with its homogeneous surface was also observed in the field emission scanning electron microscopy (FE-SEM) image. The cumulative release percentage of the nanocarrier reached 95.75 after 96 h and it is higher in the acidic environment at all times. The results of fitting the release data to the kinetic models suggested that the mechanism of release was dissolution-controlled anomalous at pH 7.4 and diffusion-controlled anomalous at pH 5.4. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry showed an increase in toxicity on MCF-7 cells and improved apoptotic cell death compared to the free drug. Consequently, the findings of this research introduced and confirmed PEG/GO/SF nanocomposite as an attractive novel drug delivery system for pH-sensitive and sustained delivery of chemotherapeutic agents in biomedicine.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Keyvan Khoshmaram
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Mona Navaei Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
12
|
Delivery and assessment of a CRISPR/nCas9-based genome editing system on in vitro models of mucopolysaccharidoses IVA assisted by magnetite-based nanoparticles. Sci Rep 2022; 12:15045. [PMID: 36057729 PMCID: PMC9440901 DOI: 10.1038/s41598-022-19407-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 12/27/2022] Open
Abstract
Mucopolysaccharidosis IV A (MPS IVA) is a lysosomal disorder caused by mutations in the GALNS gene. Consequently, the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate accumulate in the lysosomal lumen. Although enzyme replacement therapy has shown essential advantages for the patients, several challenges remain to overcome, such as the limited impact on the bone lesion and recovery of oxidative profile. Recently, we validated a CRISPR/nCas9-based gene therapy with promising results in an in vitro MPS IVA model. In this study, we have expanded the use of this CRISPR/nCas9 system to several MPS IVA fibroblasts carrying different GALNS mutations. Considering the latent need to develop more safety vectors for gene therapy, we co-delivered the CRISPR/nCas9 system with a novel non-viral vector based on magnetoliposomes (MLPs). We found that the CRISPR/nCas9 treatment led to an increase in enzyme activity between 5 and 88% of wild-type levels, as well as a reduction in GAGs accumulation, lysosomal mass, and mitochondrial-dependent oxidative stress, in a mutation-dependent manner. Noteworthy, MLPs allowed to obtain similar results to those observed with the conventional transfection agent lipofectamine. Overall, these results confirmed the potential of CRISPR/nCas9 as a genome editing tool for treating MPS IVA. We also demonstrated the potential use of MLPs as a novel delivery system for CRISPR/nCas9-based therapies.
Collapse
|
13
|
Lebrón JA, López-Cornejo P, Ostos FJ. Supramolecular Systems for Gene and Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14030471. [PMID: 35335848 PMCID: PMC8948943 DOI: 10.3390/pharmaceutics14030471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- José A. Lebrón
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain;
| | - Pilar López-Cornejo
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain;
- Correspondence: (P.L.-C.); (F.J.O.)
| | - Francisco J. Ostos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (P.L.-C.); (F.J.O.)
| |
Collapse
|