1
|
Tunca Arın TA, Havlíček D, Dorado Daza DF, Jirát-Ziółkowska N, Pop-Georgievski O, Jirák D, Sedlacek O. Water-soluble fluorinated copolymers as highly sensitive 19F MRI tracers: From structure optimization to multimodal tumor imaging. Mater Today Bio 2025; 31:101462. [PMID: 39896294 PMCID: PMC11786703 DOI: 10.1016/j.mtbio.2025.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Fluorine magnetic resonance imaging (19F MRI) using polymer tracers overcomes limitations of conventional proton MRI by offering enhanced specificity. However, the lack of systematic comparisons among fluorinated polymers has hindered rational tracer design. In this study, we synthesized an extensive library of water-soluble fluorinated copolymers by varying ratios of hydrophilic and fluorinated monomers and evaluated their 19F MRI properties to identify key structure-property relationships. Optimizing the hydrophilicity of the non-fluorinated comonomer increased fluorine content without compromising water solubility, thereby enhancing the MRI signal. Factors such as chemical structure, molecular interactions, and magnetic relaxation times also significantly influenced tracer performance. The optimized copolymer, poly((N-(2,2,2-trifluoroethyl)acrylamide)60-stat-(N-(2-hydroxyethyl)acrylamide)40), exhibited unprecedented 19F MRI sensitivity with detection limits below 1 mg mL-1, the highest reported to date. We demonstrated the tracer's potential through successful in vivo 19F MRI visualization of solid tumors in mouse models, highlighting its promise for advanced biomedical imaging applications.
Collapse
Affiliation(s)
- Tuba Ayça Tunca Arın
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2, 128 00, Czech Republic
| | - Dominik Havlíček
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 4, 140 21, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Prague 2, Prague, 128 00, Czech Republic
| | - Diego Fernando Dorado Daza
- Department of Chemistry and Physics of Surfaces and Interfaces, Institute of Macromolecular Chemistry, AS CR, Prague 6, 162 06, Czech Republic
| | - Natalia Jirát-Ziółkowska
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 4, 140 21, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Prague 2, Prague, 128 00, Czech Republic
| | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Interfaces, Institute of Macromolecular Chemistry, AS CR, Prague 6, 162 06, Czech Republic
| | - Daniel Jirák
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 4, 140 21, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Liberec, 461 17, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2, 128 00, Czech Republic
| |
Collapse
|
2
|
Zhang JA, Haddleton D, Wilson P, Zhu LH, Dai CY, Zhao LL. pH-Responsive Amphiphilic Triblock Fluoropolymers as Assemble Oxygen Nanoshuttles for Enhancing PDT against Hypoxic Tumor. Bioconjug Chem 2024; 35:400-411. [PMID: 38366969 DOI: 10.1021/acs.bioconjchem.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Photodynamic therapy (PDT) is a cancer treatment strategy that utilizes photosensitizers to convert oxygen within tumors into reactive singlet oxygen (1O2) to lyse tumor cells. Nevertheless, pre-existing tumor hypoxia and oxygen consumption during PDT can lead to an insufficient oxygen supply, potentially reducing the photodynamic efficacy. In response to this issue, we have devised a pH-responsive amphiphilic triblock fluorinated polymer (PDP) using copper-mediated RDRP. This polymer, composed of poly(ethylene glycol) methyl ether acrylate, 2-(diethylamino)ethyl methacrylate, and (perfluorooctyl)ethyl acrylate, self-assembles in an aqueous environment. Oxygen, chlorine e6 (Ce6), and doxorubicin (DOX) can be codelivered efficiently by PDP. The incorporation of perfluorocarbon into the formulation enhances the oxygen-carrying capacity of PDP, consequently extending the lifetime of 1O2. This increased lifetime, in turn, amplifies the PDT effect and escalates the cellular cytotoxicity. Compared with PDT alone, PDP@Ce6-DOX-O2 NPs demonstrated significant inhibition of tumor growth. This study proposes a novel strategy for enhancing the efficacy of PDT.
Collapse
Affiliation(s)
- Jun-An Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
| | - David Haddleton
- Department of Chemistry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Paul Wilson
- Department of Chemistry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Lin-Hua Zhu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
- Department of Chemistry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Key Laboratory of Functional Organic Polymers of Haikou, Tropical Functional Polymer Materials Engineering Research Center of Hainan, Haikou 571158, China
| | - Chun-Yan Dai
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
- Department of Chemistry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Key Laboratory of Functional Organic Polymers of Haikou, Tropical Functional Polymer Materials Engineering Research Center of Hainan, Haikou 571158, China
| | - Lin-Lu Zhao
- College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
3
|
Zhang X, Wang L, Huang R, Wang J, Yan Q. Perfluoro-tert-butyl Group-Derived Capmatinib: Synthesis, Biological Evaluation and Its Application in 19 F Magnetic Resonance Imaging. Chembiochem 2023; 24:e202300354. [PMID: 37345408 DOI: 10.1002/cbic.202300354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
Capmatinib is an FDA-approved drug to treat metastatic non-small cell lung cancer with MET-exon 14 skipping. Herein, the perfluoro-tert-butyl group, which possesses nine chemically identical fluorine atoms, was introduced on Capmatinib to afford a targeted 19 F magnetic resonance imaging (MRI) probe, perfluoro-tert-butyl group-derived Capmatinib (9F-CAP). The 19 F MRI concentration limit was found to be 25 mM in FLASH sequence. Molecular docking simulation, surface plasmon resonance (SPR) (with a Kd of 40.7 μM), half-inhibitory concentration (with a IC50 of 168 nM), Annexin V, and cytotoxicity assays jointly demonstrated that the 9F-CAP targeted cMET protein specifically. Therefore, the targeted imaging capability of 9F-CAP is of great significance for the preoperative diagnosis of specific cancers.
Collapse
Affiliation(s)
- Xinnan Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel, Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Luting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, 201203, China
| | - Jingbo Wang
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Rd., Shanghai, 200025, China
| | - Qifan Yan
- Key Laboratory for Advanced Materials and Feringa Nobel, Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| |
Collapse
|
4
|
Maxouri O, Bodalal Z, Daal M, Rostami S, Rodriguez I, Akkari L, Srinivas M, Bernards R, Beets-Tan R. How to 19F MRI: applications, technique, and getting started. BJR Open 2023; 5:20230019. [PMID: 37953866 PMCID: PMC10636348 DOI: 10.1259/bjro.20230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 11/14/2023] Open
Abstract
Magnetic resonance imaging (MRI) plays a significant role in the routine imaging workflow, providing both anatomical and functional information. 19F MRI is an evolving imaging modality where instead of 1H, 19F nuclei are excited. As the signal from endogenous 19F in the body is negligible, exogenous 19F signals obtained by 19F radiofrequency coils are exceptionally specific. Highly fluorinated agents targeting particular biological processes (i.e., the presence of immune cells) have been visualised using 19F MRI, highlighting its potential for non-invasive and longitudinal molecular imaging. This article aims to provide both a broad overview of the various applications of 19F MRI, with cancer imaging as a focus, as well as a practical guide to 19F imaging. We will discuss the essential elements of a 19F system and address common pitfalls during acquisition. Last but not least, we will highlight future perspectives that will enhance the role of this modality. While not an exhaustive exploration of all 19F literature, we endeavour to encapsulate the broad themes of the field and introduce the world of 19F molecular imaging to newcomers. 19F MRI bridges several domains, imaging, physics, chemistry, and biology, necessitating multidisciplinary teams to be able to harness this technology effectively. As further technical developments allow for greater sensitivity, we envision that 19F MRI can help unlock insight into biological processes non-invasively and longitudinally.
Collapse
Affiliation(s)
| | | | | | | | | | - Leila Akkari
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
5
|
Zhang J, Jiang X, Luo W, Mo Y, Dai C, Zhu L. PEGA-BA@Ce6@PFCE Micelles as Oxygen Nanoshuttles for Tumor Hypoxia Relief and Enhanced Photodynamic Therapy. Molecules 2023; 28:6697. [PMID: 37764473 PMCID: PMC10535279 DOI: 10.3390/molecules28186697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Tumor hypoxia, which is mainly caused by the inefficient microvascular systems induced by rapid tumor growth, is a common characteristic of most solid tumors and has been found to hinder treatment outcomes for many types of cancer therapeutics. In this study, an amphiphilic block copolymer, poly (ethylene glycol) methyl ether acrylate-block-n-butyl acrylate (PEGA-BA), was prepared via the ATRP method and self-assembled into core-shell micelles as nano radiosensitizers. These micelles encapsulated a photosensitizer, Chlorin e6 (Ce6), and demonstrated well-defined morphology, a uniform size distribution, and high oxygen loading capacity. Cell experiments showed that PEGA-BA@Ce6@PFCE micelles could effectively enter cells. Further in vitro anticancer studies demonstrated that the PEGA-BA@Ce6@PFCE micelles significantly suppressed the tumor cell survival rate when exposed to a laser.
Collapse
Affiliation(s)
- Junan Zhang
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
| | - Xiaoyun Jiang
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
| | - Wenyue Luo
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
| | - Yongjie Mo
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
| | - Chunyan Dai
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Haikou 571158, China
| | - Linhua Zhu
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
- Key Laboratory of Functional Organic Polymers of Haikou, Haikou 571158, China
| |
Collapse
|
6
|
Li J, Kirberger SE, Wang Y, Cui H, Wagner CR, Pomerantz WCK. Design of Highly Fluorinated Peptides for Cell-based 19F NMR. Bioconjug Chem 2023; 34:1477-1485. [PMID: 37523271 PMCID: PMC10699466 DOI: 10.1021/acs.bioconjchem.3c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The design of imaging agents with high fluorine content is essential for overcoming the challenges associated with signal detection limits in 19F MRI-based molecular imaging. In addition to perfluorocarbon and fluorinated polymers, fluorinated peptides offer an additional strategy for creating sequence-defined 19F magnetic resonance imaging (MRI) imaging agents with a high fluorine signal. Our previously reported unstructured trifluoroacetyllysine-based peptides possessed good physiochemical properties and could be imaged at high magnetic field strength. However, the low detection limit motivated further improvements in the fluorine content of the peptides as well as removal of nonspecific cellular interactions. This research characterizes several new highly fluorinated synthetic peptides composed of highly fluorinated amino acids. 19F NMR analysis of peptides TB-1 and TB-9 led to highly overlapping, intense fluorine resonances and acceptable aqueous solubility. Flow cytometry analysis and fluorescence microscopy further showed nonspecific binding could be removed in the case of TB-9. As a preliminary experiment toward developing molecular imaging agents, a fluorinated EGFR-targeting peptide (KKKFFKK-βA-YHWYGYTPENVI) and an EGFR-targeting protein complex E1-DD bioconjugated to TB-9 were prepared. Both bioconjugates maintained good 19F NMR performance in aqueous solution. While the E1-DD-based imaging agent will require further engineering, the success of cell-based 19F NMR of the EGFR-targeting peptide in A431 cells supports the potential use of fluorinated peptides for molecular imaging.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven E Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Huarui Cui
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Fluorinated Human Serum Albumin as Potential 19F Magnetic Resonance Imaging Probe. Molecules 2023; 28:molecules28041695. [PMID: 36838682 PMCID: PMC9959765 DOI: 10.3390/molecules28041695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Fluorinated human serum albumin conjugates were prepared and tested as potential metal-free probes for 19F magnetic resonance imaging (MRI). Each protein molecule was modified by several fluorine-containing compounds via the N-substituted natural acylating reagent homocysteine thiolactone. Albumin conjugates retain the protein's physical and biological properties, such as its 3D dimensional structure, aggregation ability, good solubility, proteolysis efficiency, biocompatibility, and low cytotoxicity. A dual-labeled with cyanine 7 fluorescence dye and fluorine reporter group albumin were synthesized for simultaneous fluorescence imaging and 19F MRI. The preliminary in vitro studies show the prospects of albumin carriers for multimodal imaging.
Collapse
|
8
|
Lim I, Yu Lin E, Garcia J, Jia S, Sommerhalter RE, Ghosh SK, Gladysz JA, Sletten EM. Shortwave Infrared Fluorofluorophores for Multicolor In Vivo Imaging. Angew Chem Int Ed Engl 2023; 62:e202215200. [PMID: 36470851 PMCID: PMC9892283 DOI: 10.1002/anie.202215200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Developing chemical tools to detect and influence biological processes is a cornerstone of chemical biology. Here we combine two tools which rely on orthogonality- perfluorocarbons and multiplexed shortwave infrared (SWIR) fluorescence imaging- to visualize nanoemulsions in real time in living mice. Drawing inspiration from fluorous and SWIR fluorophore development, we prepared two SWIR-emissive, fluorous-soluble chromenylium polymethine dyes. These are the most red-shifted fluorous fluorophores- "fluorofluorophores"-to date. After characterizing the dyes, their utility was demonstrated by tracking perfluorocarbon nanoemulsion biodistribution in vivo. Using an excitation-multiplexed approach to image two variables simultaneously, we gained insight into the importance of size and surfactant identity on biodistribution.
Collapse
Affiliation(s)
- Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | - Eric Yu Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | - Joseph Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | - Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | - Robert E Sommerhalter
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842, USA
| | - Subrata K Ghosh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842, USA
| | - John A Gladysz
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| |
Collapse
|