1
|
Buttari B, Recalchi S, Riitano G, Capozzi A, Ucci FM, Manganelli V, Fratini F, Profumo E, Garofalo T, Alessandri C, Misasi R, Conti F, Longo A, Sorice M. Extracellular microvesicles from patients with Rheumatoid arthritis promote dendritic cell activation in vitro. Front Immunol 2025; 16:1532114. [PMID: 40109338 PMCID: PMC11920144 DOI: 10.3389/fimmu.2025.1532114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Rheumatoid Arthritis (RA) is a systemic autoimmune disease characterized by chronic synovial inflammation affecting diarthrodial joints, with cartilage destruction and bone erosion. Environmental inflammatory stimuli can induce maturation of dendritic cells (DCs), which promote differentiation and activation of effector T lymphocytes. We previously highlighted the role of extracellular microvesicles (EMVs) in pathogenesis by carrying antigens that trigger autoantibody production. In this investigation we verified whether EMVs may activate immature monocyte-derived DCs, inducing phenotypic and functional characteristics of mature DCs. Methods EMVs were obtained from 7 RA patients naïve to biological disease-modifying anti-rheumatic drugs (DMARDs) and tested for their capability to activate DCs from healthy donors. Results We preliminary confirmed by western blot that carbamylated and citrullinated proteins are present in EMVs from RA patients. Moreover, surface marker phenotyping indicated that EMV treated-DCs exhibit increased expression of CD83 and CD86, as well as of CD83+ HLA-DR+ CD80+ CD86+ cells, indicating that the DCs are in a mature state. Furthermore, biochemical data demonstrated that EMVs from plasma of RA patients induce MAPK and NF-κB activation in DCs. EMVs from the plasma of RA patients were also able to stimulate DCs to produce IL-12, IL-1β and IL-10, inducing a proinflammatory phenotype. Conclusions These findings demonstrate that EMVs from RA patients promote DC activation in vitro, suggesting a potential mechanism by which RA microenvironment perpetuates inflammation through the modulation of DC function. These knowledges provide new insight in the role of EMVs in the pathogenesis of RA and their potential role as therapeutic targets.
Collapse
Affiliation(s)
- Brigitta Buttari
- Department of Cardiovascular and Endocrine-metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Federica Maria Ucci
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Federica Fratini
- Proteomics Core Facility, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Cristiano Alessandri
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Agostina Longo
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
2
|
Han P, Liu X, He J, Han L, Li J. Overview of mechanisms and novel therapies on rheumatoid arthritis from a cellular perspective. Front Immunol 2024; 15:1461756. [PMID: 39376556 PMCID: PMC11456432 DOI: 10.3389/fimmu.2024.1461756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of joints in response to autoimmune disorders. Once triggered, many factors were involved in the development of RA, including both cellular factors like osteoclasts, synovial fibroblasts, T cells, B cells, and soluble factors like interleukin-1 (IL-1), IL-6, IL-17 and tumor necrosis factor-α (TNF-α), etc. The complex interplay of those factors results in such pathological abnormality as synovial hyperplasia, bone injury and multi-joint inflammation. To treat this chronic life-affecting disease, the primary drugs used in easing the patient's symptoms are disease-modifying antirheumatic drugs (DMARDs). However, these traditional drugs could cause serious side effects, such as high blood pressure and stomach ulcers. Interestingly, recent discoveries on the pathogenesis of RA have led to various new kinds of drugs or therapeutic strategies. Therefore, we present a timely review of the latest development in this field, focusing on the cellular aspects of RA pathogenesis and new therapeutic methods in clinical application. Hopefully it can provide translational guide to the pre-clinical research and treatment for the autoimmune joint disease.
Collapse
Affiliation(s)
- Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jiang He
- Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Luyang Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
3
|
Nie DQ, Yan GX, Wang ZY, Yan X, Yu GM, Gao JL, Liu D, Li HB. Combination treatment with interferon-γ may be a potential strategy to improve the efficacy of cytotherapy for rheumatoid arthritis: A network meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:29. [PMID: 39239074 PMCID: PMC11376714 DOI: 10.4103/jrms.jrms_697_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/21/2022] [Accepted: 12/07/2022] [Indexed: 09/07/2024]
Abstract
Background Mesenchymal stem cells (MSCs) are considered a promising therapeutic strategy for rheumatoid arthritis (RA), but the current clinical results are varied. This study is to analyze the therapeutic effect of cell-based strategies on RA. Materials and Methods The searches were performed with public databases from inception to June 17, 2021. Randomized controlled trials researching cell-based therapies in RA patients were included. Results Eight studies, including 480 patients, were included in the analysis. The results showed that compared to the control, MSC treatment significantly reduced the disease activity score (DAS) at the second standardized mean difference (SMD): -0.70; 95% confidence interval (CI): -1.25, -0.15; P = 0.01) and 3rd month (SMD: -1.47; 95% CI: -2.77, -0.18; P < 0.01) and significantly reduced the rheumatoid factor (RF) level at the first (SMD: -0.38; 95% CI: -0.72, -0.05; P = 0.03) and 6th months (SMD: -0.81; 95% CI: -1.32, -0.31; P < 0.01). In the network meta-analysis, MSCs combined with interferon-γ (MSC_IFN) had a significant effect on increasing the American college of rheumatology criteria (ACR) 20, ACR50, and DAS <3.2 populations, had a significant effect on reducing the DAS, and decreased the RF level for a long period. Conclusion MSCs could relieve the DAS of RA patients in the short term and reduce the level of RF. MSC_IFN showed a more obvious effect, which could significantly improve the results of ACR20, ACR50, and DAS <3.2 and reduce the DAS and RF levels.
Collapse
Affiliation(s)
- Da-Qing Nie
- Department of Rheumatism, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Gui-Xiu Yan
- The Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zheng-Yi Wang
- Department of College of Nursing and Health Science, Nanfang Medical College of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xue Yan
- Department of Rheumatism, The Third Clinical Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Gui-Mei Yu
- Department of Rheumatism, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-Liang Gao
- Department of Rheumatism, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Di Liu
- Department of Rheumatism, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hong-Bo Li
- Department of Rheumatism, The Third Clinical Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Dehnavi S, Sadeghi M, Tavakol Afshari J, Mohammadi M. Interactions of mesenchymal stromal/stem cells and immune cells following MSC-based therapeutic approaches in rheumatoid arthritis. Cell Immunol 2023; 393-394:104771. [PMID: 37783061 DOI: 10.1016/j.cellimm.2023.104771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Rheumatoid arthritis (RA) is considered to be a degenerative and progressive autoimmune disorder. Although several medicinal regimens are used to treat RA, potential adverse events such as metabolic disorders and increased risk of infection, as well as drug resistance in some patients, make it essential to find an effective and safe therapeutic approach. Mesenchymal stromal/stem cells (MSCs) are a group of non-hematopoietic stromal cells with immunomodulatory and inhibitory potential. These cells exert their regulatory properties through direct cell-to-cell interactions and paracrine effects on various immune and non-immune cells. As conventional therapeutic approaches for RA are limited due to their side effects, and some patients became refractory to the treatment, MSCs are considered as a promising alternative treatment for RA. In this review, we introduced various experimental and clinical studies conducted to evaluate the therapeutic effects of MSCs on animal models of arthritis and RA patients. Then, possible modulatory and suppressive effects of MSCs on different innate and adaptive immune cells, including dendritic cells, neutrophils, macrophages, natural killer cells, B lymphocytes, and various subtypes of T cells, were categorized and summarized. Finally, limitations and future considerations for the efficient application of MSCs as a therapeutic approach in RA patients were presented.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Laranjeira P, dos Santos F, Salvador MJ, Simões IN, Cardoso CMP, Silva BM, Henriques-Antunes H, Corte-Real L, Couceiro S, Monteiro F, Santos C, Santiago T, da Silva JAP, Paiva A. Umbilical-Cord-Derived Mesenchymal Stromal Cells Modulate 26 Out of 41 T Cell Subsets from Systemic Sclerosis Patients. Biomedicines 2023; 11:1329. [PMID: 37239000 PMCID: PMC10215673 DOI: 10.3390/biomedicines11051329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc) is an immune-mediated disease wherein T cells are particularly implicated, presenting a poor prognosis and limited therapeutic options. Thus, mesenchymal-stem/stromal-cell (MSC)-based therapies can be of great benefit to SSc patients given their immunomodulatory, anti-fibrotic, and pro-angiogenic potential, which is associated with low toxicity. In this study, peripheral blood mononuclear cells from healthy individuals (HC, n = 6) and SSc patients (n = 9) were co-cultured with MSCs in order to assess how MSCs affected the activation and polarization of 58 different T cell subsets, including Th1, Th17, and Treg. It was found that MSCs downregulated the activation of 26 out of the 41 T cell subsets identified within CD4+, CD8+, CD4+CD8+, CD4-CD8-, and γδ T cells in SSc patients (HC: 29/42) and affected the polarization of 13 out of 58 T cell subsets in SSc patients (HC: 22/64). Interestingly, SSc patients displayed some T cell subsets with an increased activation status and MSCs were able to downregulate all of them. This study provides a wide-ranging perspective of how MSCs affect T cells, including minor subsets. The ability to inhibit the activation and modulate the polarization of several T cell subsets, including those implicated in SSc's pathogenesis, further supports the potential of MSC-based therapies to regulate T cells in a disease whose onset/development may be due to immune system's malfunction.
Collapse
Affiliation(s)
- Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco dos Santos
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Maria João Salvador
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (M.J.S.); (T.S.)
| | - Irina N. Simões
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Carla M. P. Cardoso
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Bárbara M. Silva
- Algarve Biomedical Center (ABC), Universidade do Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Helena Henriques-Antunes
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Luísa Corte-Real
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Sofia Couceiro
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Filipa Monteiro
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Carolina Santos
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Tânia Santiago
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (M.J.S.); (T.S.)
| | - José A. P. da Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (M.J.S.); (T.S.)
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| |
Collapse
|
6
|
Arshad M, Jalil F, Jaleel H, Ghafoor F. Bone marrow derived mesenchymal stem cells therapy for rheumatoid arthritis - a concise review of past ten years. Mol Biol Rep 2023; 50:4619-4629. [PMID: 36929285 DOI: 10.1007/s11033-023-08277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/11/2023] [Indexed: 03/18/2023]
Abstract
Rheumatoid arthritis is an autoimmune disorder characterized by swelling in synovial joints and erosion of bones. The disease is normally treated with conventional drugs which provide only temporary relief to the symptoms. Over the past few years, mesenchymal stromal cells have become the center of attention for treating this disease due to their immuno-modulatory and anti-inflammatory characteristics. Various studies on treatment of rheumatoid arthritis by using these cells have shown positive outcomes in terms of reduction in the level of pain as well as improvement of the function and structure of joints. Mesenchymal stromal cells can be derived from multiple sources, however, the ones derived from bone marrow are considered most beneficial for treating several disorders including rheumatoid arthritis on account of being safer and more effective. This review summarizes all the preclinical and clinical studies which were conducted over the last ten years for therapy of rheumatoid arthritis utilizing these cells. The literature was reviewed using the terms "mesenchymal stem/stromal cells and rheumatoid arthritis'' and "bone marrow derived mesenchymal stromal cells and therapy of rheumatoid arthritis''. Data was extracted to enable the readers to have access to the most relevant information regarding advancement in therapeutic potential of these stromal cells. Additionally, this review will also help in fulfilling any gap in current knowledge of readers about the outcome of using these cells in animal models, cell line and in patients suffering from rheumatoid arthritis and other autoimmune disorders as well.
Collapse
Affiliation(s)
- Maria Arshad
- Department of Research & Innovation, Shalamar Institute of Health Sciences, Lahore, Pakistan.
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Hadiqa Jaleel
- Department of Research & Innovation, Shalamar Institute of Health Sciences, Lahore, Pakistan
| | - Farkhanda Ghafoor
- Department of Research & Innovation, Shalamar Institute of Health Sciences, Lahore, Pakistan
| |
Collapse
|
7
|
Liu J, Gao J, Niu Q, Wu F, Wu Z, Zhang L. Bibliometric and visualization analysis of mesenchymal stem cells and rheumatoid arthritis (from 2012 to 2021). Front Immunol 2022; 13:1001598. [PMID: 36311707 PMCID: PMC9606664 DOI: 10.3389/fimmu.2022.1001598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to joint deformity and loss of function. Recent studies have shown great progress in the research of mesenchymal stem cells (MSCs) in RA. However, thus far, there have been no bibliometric or visualization analyses in this field. This bibliometric analysis provides a comprehensive overview of the general information and research hotspots of MSCs and RA. Methods Articles relevant to MSCs and RA, published between 2012 and 2021, were searched using the Web of Science Core Collection database. Irrelevant publications were excluded from the analysis. Bibliometric and visualization analyses were conducted using VOSviewer, CiteSpace, and Scimago Graphica. Results A total of 577 articles were analyzed. The annual number of publications increased from 2012 to 2017 and plateaued from 2017 to 2021. China and the USA had the largest number of publications. Collaboration among different organizations mainly occurs between institutes of the same country. Stem Cell Research and Therapy and Frontiers in Immunology were the most popular journals in this field. All the top 20 co-cited authors had a positive co-citation relationship. The top references indicate that MSCs can contribute to RA research and treatment mainly via immunomodulation. From 2012 to 2021, “collagen-induced arthritis,” “immunomodulation,” and “therapy” were some of the keywords associated with MSCs and RA, while “extracellular vesicles” showed a strong keyword burst from 2019 to 2021. Conclusion MSCs and RA have been widely studied in different countries and institutions and by different authors over the last ten years. China and the USA had the largest number of publications. Different types of journals provide admirable sources for researchers. Some keywords, including immunomodulation and extracellular vesicles, may be hot spots in the near future. There will be more basic research and clinical translation of MSCs and RA, and substantial new treatments for RA will soon be developed.
Collapse
Affiliation(s)
- Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinfang Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- *Correspondence: Liyun Zhang,
| |
Collapse
|
8
|
Connection between Mesenchymal Stem Cells Therapy and Osteoclasts in Osteoarthritis. Int J Mol Sci 2022; 23:ijms23094693. [PMID: 35563083 PMCID: PMC9102843 DOI: 10.3390/ijms23094693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
The use of mesenchymal stem cells constitutes a promising therapeutic approach, as it has shown beneficial effects in different pathologies. Numerous in vitro, pre-clinical, and, to a lesser extent, clinical trials have been published for osteoarthritis. Osteoarthritis is a type of arthritis that affects diarthritic joints in which the most common and studied effect is cartilage degradation. Nowadays, it is known that osteoarthritis is a disease with a very powerful inflammatory component that affects the subchondral bone and the rest of the tissues that make up the joint. This inflammatory component may induce the differentiation of osteoclasts, the bone-resorbing cells. Subchondral bone degradation has been suggested as a key process in the pathogenesis of osteoarthritis. However, very few published studies directly focus on the activity of mesenchymal stem cells on osteoclasts, contrary to what happens with other cell types of the joint, such as chondrocytes, synoviocytes, and osteoblasts. In this review, we try to gather the published bibliography in relation to the effects of mesenchymal stem cells on osteoclastogenesis. Although we find promising results, we point out the need for further studies that can support mesenchymal stem cells as a therapeutic tool for osteoclasts and their consequences on the osteoarthritic joint.
Collapse
|