1
|
Wang Y, Ding N, Zhang Z. Effect of phosphoric acid containing polyvinylpyrrolidone as protective etchant for dentin bonding. J Prosthet Dent 2024; 131:743.e1-743.e6. [PMID: 38368144 DOI: 10.1016/j.prosdent.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
STATEMENT OF PROBLEM Phosphoric acid is commonly used in dentistry as an etchant but can result in excessive demineralization of dentin, a major contributor to the instability of dentin-bonded restorations. Nevertheless, research on the development of etchants that can reduce acid damage is sparse. PURPOSE The purpose of this in vitro study was to investigate the effects of polyvinylpyrrolidone-modified phosphoric acid on the dentin bonding of an etch-and-rinse adhesive. MATERIAL AND METHODS Protective etchants were prepared by adding polyvinylpyrrolidone to 35% phosphoric acid aqueous solutions: the 3 concentrations were 0.5% (P0.5% group), 1% (P1% group), and 2% (P2% group) w/v. The treatment agent of the control group (C) was 35% phosphoric acid gel. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), microhardness, microtensile bonding strength (µTBS), nanoleakage, and in situ zymography were used to evaluate the appearance of the protective etchant on dentin bonding. The results were analyzed with a 1-way ANOVA test (α=.05). RESULTS SEM showed no obviously exposed collagen fiber in the P1% and P2% groups. FTIR showed less demineralization of the dentin surface, and microhardness was higher after treatment with the protective etchant (P<.05). The µTBS of P1% (70 ±9.2 MPa) was the highest, and group C (44 ±5.8 MPa) was the lowest in all groups (P<.05). Moreover, there was weaker MMP activity in the P1% and P2% groups (P<.05). CONCLUSIONS This study demonstrated that the protective etchant effectively reduced demineralization, enhanced bond strength, and reduced nanoleakage and enzyme activity within the hybrid layer.
Collapse
Affiliation(s)
- Yaoxin Wang
- Graduate student, Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Ning Ding
- Professor, Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Zutai Zhang
- Professor, Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
2
|
Borges-Vilches J, Unalan I, Aguayo CR, Fernández K, Boccaccini AR. Multifunctional Chitosan Scaffold Platforms Loaded with Natural Polyphenolic Extracts for Wound Dressing Applications. Biomacromolecules 2023; 24:5183-5193. [PMID: 37906697 DOI: 10.1021/acs.biomac.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Chitosan (CS)-based scaffolds loaded with Pinus radiata extract bark (PE) and grape seed extract (GSE) were successfully developed for wound dressing applications. The effects of incorporating GSE and PE in CS scaffolds were investigated in relation to their physicochemical and biological properties. All scaffolds exhibited porous structures with the ability to absorb more than 70 times their weight when contacted with blood and phosphate buffer solution. The incorporation of GSE and PE into the CS scaffolds increased their blood absorption ability and degradation rates over time. All scaffolds showed a clotting ability above 95%, with their surfaces being favorable for red blood cell attachment. Both GSE and PE were released from the CS scaffolds in a sustained manner. Scaffolds loaded with GSE and PE inhibited the bacterial activity of S. aureus and E. coli by 40% and 44% after 24 h testing. In vitro cell viability studies demonstrated that all scaffolds were nontoxic to HaCaT cells. Importantly, the addition of GSE and PE further increased cell viability compared to that of the CS scaffold. This study provides a new synthesis method to immobilize GSE and PE on CS scaffolds, enabling the formation of novel material platforms with a high potential for wound dressing applications.
Collapse
Affiliation(s)
- Jessica Borges-Vilches
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Claudio R Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Pérez Gutíerrez CL, Di Michele A, Pagano C, Puglia D, Luzi F, Beccari T, Ceccarini MR, Primavilla S, Valiani A, Vicino C, Ricci M, Viseras Iborra CA, Perioli L. Polymeric Patches Based on Chitosan/Green Clay Composites and Hazelnut Shell Extract as Bio-Sustainable Medication for Wounds. Pharmaceutics 2023; 15:2057. [PMID: 37631271 PMCID: PMC10459527 DOI: 10.3390/pharmaceutics15082057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Hazelnut shells, the main waste deriving from hazelnut processing, represent an interesting source of active molecules useful in pharmaceutics, although they have not yet been examined in depth. A hydrosoluble extract (hazelnut shell extract, HSE) was prepared by the maceration method using a hydroalcoholic solution and used as the active ingredient of patches (prepared by casting method) consisting of composites of highly deacetylated chitosan and green clay. In vitro studies showed that the formulation containing HSE is able to stimulate keratinocyte growth, which is useful for healing purposes, and to inhibit the growth of S. aureus (Log CFU/mL 0.95 vs. 8.85 of the control after 48 h); this bacterium is often responsible for wound infections and is difficult to treat by conventional antibiotics due to its antibiotic resistance. The produced patches showed suitable tensile properties that are necessary to withstand mechanical stress during both the removal from the packaging and application. The obtained results suggest that the developed patch could be a suitable product to treat wounds.
Collapse
Affiliation(s)
- Carmen Laura Pérez Gutíerrez
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (T.B.); (M.R.C.); (C.V.); (M.R.); (L.P.)
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18016 Granada, Spain;
| | | | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (T.B.); (M.R.C.); (C.V.); (M.R.); (L.P.)
| | - Debora Puglia
- Department of Civil and Environmental Engineering, University of Perugia, UdR INSTM, 05100 Terni, Italy;
| | - Francesca Luzi
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (T.B.); (M.R.C.); (C.V.); (M.R.); (L.P.)
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (T.B.); (M.R.C.); (C.V.); (M.R.); (L.P.)
| | - Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (A.V.)
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (A.V.)
| | - Camilla Vicino
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (T.B.); (M.R.C.); (C.V.); (M.R.); (L.P.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (T.B.); (M.R.C.); (C.V.); (M.R.); (L.P.)
| | - César Antonio Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18016 Granada, Spain;
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (T.B.); (M.R.C.); (C.V.); (M.R.); (L.P.)
| |
Collapse
|
4
|
Di Michele A, Gutiérrez CLP, Pagano C, Beccari T, Ceccarini MR, Luzi F, Puglia D, Tensi L, D'Agosto E, Iborra CAV, Ricci M, Perioli L. Formulation and characterization of sustainable bioadhesive films for wound treatment based on barley β-glucan extract obtained using the high power ultrasonic technique. Int J Pharm 2023; 638:122925. [PMID: 37028573 DOI: 10.1016/j.ijpharm.2023.122925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023]
Abstract
β-glucan is a well-known functional and bioactive food ingredient. Recently, some studies highlighted several interesting pharmacological activities, such as hypocholesterolemic, hypoglycemic, immunomodulatory, antitumor, antioxidant and anti-inflammatory. The aim of this study is to evaluate a novel application of β-glucan, obtained from barley, for the development of formulations for skin use. Several water suspensions were obtained from barley flour of different particle sizes treated by high power ultrasonic (HPU) technique. Barley flour fraction in the range of 400-500 μm allowed to obtain a stable suspension, represented both by a water soluble and water insoluble fraction of β-glucans, that showed excellent film forming ability. The plasticizer sorbitol as well as the bioadhesive biopolymer acacia gum were added to this suspension in order to obtain a gel suitable to prepare films by casting. The obtained films demonstrated suitable mechanical properties and ability to stimulate in vitro keratinocytes growth suggesting its possible application in dermatological field as for wound treatment. This study demonstrated the dual use of barley suspension: as excipient and as active ingredient.
Collapse
Affiliation(s)
| | - Carmen Laura Pérez Gutiérrez
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Francesca Luzi
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), 60131 Ancona, Italy
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Elena D'Agosto
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - César Antonio Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Feraru A, Tóth ZR, Mureșan-Pop M, Baia M, Gyulavári T, Páll E, Turcu RVF, Magyari K, Baia L. Anionic Polysaccharide Cryogels: Interaction and In Vitro Behavior of Alginate-Gum Arabic Composites. Polymers (Basel) 2023; 15:polym15081844. [PMID: 37111992 PMCID: PMC10146865 DOI: 10.3390/polym15081844] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
In the present study, polysaccharide-based cryogels demonstrate their potential to mimic a synthetic extracellular matrix. Alginate-based cryogel composites with different gum arabic ratios were synthesized by an external ionic cross-linking protocol, and the interaction between the anionic polysaccharides was investigated. The structural features provided by FT-IR, Raman, and MAS NMR spectra analysis indicated that a chelation mechanism is the main process linking the two biopolymers. In addition, SEM investigations revealed a porous, interconnected, and well-defined structure suitable as a scaffold in tissue engineering. The in vitro tests confirmed the bioactive character of the cryogels through the development of the apatite layer on the surface of the samples after immersion in simulated body fluid, identifying the formation of a stable phase of calcium phosphate and a small amount of calcium oxalate. Cytotoxicity tests performed on fibroblast cells demonstrated the non-toxic effect of alginate-gum arabic cryogel composites. In addition, an increase in flexibility was noted for samples with a high gum arabic content, which determines an appropriate environment to promote tissue regeneration. The newly obtained biomaterials that exhibit all these properties can be successfully involved in the regeneration of soft tissues, wound management, or controlled drug release systems.
Collapse
Affiliation(s)
- Alexandra Feraru
- Doctoral School of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Zsejke-Réka Tóth
- Doctoral School of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Marieta Mureșan-Pop
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Monica Baia
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, 6720 Szeged, Hungary
| | - Emőke Páll
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Romulus V F Turcu
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donath 67-103, 400293 Cluj-Napoca, Romania
| | - Klára Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Lucian Baia
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Biomaterial Inks from Peptide-Functionalized Silk Fibers for 3D Printing of Futuristic Wound-Healing and Sensing Materials. Int J Mol Sci 2023; 24:ijms24020947. [PMID: 36674467 PMCID: PMC9864705 DOI: 10.3390/ijms24020947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
This study illustrates the sensing and wound healing properties of silk fibroin in combination with peptide patterns, with an emphasis on the printability of multilayered grids, and envisions possible applications of these next-generation silk-based materials. Functionalized silk fibers covalently linked to an arginine-glycine-aspartic acid (RGD) peptide create a platform for preparing a biomaterial ink for 3D printing of grid-like piezoresistors with wound-healing and sensing properties. The culture medium obtained from 3D-printed silk fibroin enriched with RGD peptide improves cell adhesion, accelerating skin repair. Specifically, RGD peptide-modified silk fibroin demonstrated biocompatibility, enhanced cell adhesion, and higher wound closure rates at lower concentration than the neat peptide. It was also shown that the printing of peptide-modified silk fibroin produces a piezoresistive transducer that is the active component of a sensor based on a Schottky diode harmonic transponder encoding information about pressure. We discovered that such biomaterial ink printed in a multilayered grid can be used as a humidity sensor. Furthermore, humidity activates a transition between low and high conductivity states in this medium that is retained unless a negative voltage is applied, paving the way for utilization in non-volatile organic memory devices. Globally, these results pave the way for promising applications, such as monitoring parameters such as human wound care and being integrated in bio-implantable processors.
Collapse
|
8
|
Kędzierska M, Jamroży M, Drabczyk A, Kudłacik-Kramarczyk S, Bańkosz M, Gruca M, Potemski P, Tyliszczak B. Analysis of the Influence of Both the Average Molecular Weight and the Content of Crosslinking Agent on Physicochemical Properties of PVP-Based Hydrogels Developed as Innovative Dressings. Int J Mol Sci 2022; 23:ijms231911618. [PMID: 36232921 PMCID: PMC9569959 DOI: 10.3390/ijms231911618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogels belong to the group of polymers with a three-dimensional crosslinked structure, and their crosslinking density strongly affects their physicochemical properties. Here, we verified the impact of both the average molecular weight of crosslinking agents used during the photopolymerization of hydrogels and that of their content on selected properties of these materials. First, PVP-based hydrogels modified with Aloe vera juice and L-ascorbic acid were prepared using UV radiation. Next, their surface morphology was characterized via optical scanning electron microscopy, whereas their chemical structure was investigated by FT-IR spectroscopy. Moreover, we verified the tendency of the hydrogels to degrade in selected physiological liquids, as well as their tensile strength, percentage of elongation, and swelling capability. We found that the more crosslinking agent in the hydrogel matrix, the higher its tensile strength and the less elongation. The hydrogels showed the highest stability during incubation in SBF and 2% hemoglobin solution. A sharp decrease in the pH of distilled water observed during the incubation of the hydrogels was probably due to the release of Aloe vera juice from the hydrogel matrices. This was additionally confirmed by the decrease in the intensity of the absorption band derived from the polysaccharides included in this additive and by the decrease in the swelling ratio after 48 h. Importantly, all hydrogels demonstrated swelling properties, and it was proven that the higher content of the crosslinking agent in hydrogels, the lower their swelling ability.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 93-513 Lodz, Poland
| | - Mateusz Jamroży
- Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
- Correspondence: (M.J.); (S.K.-K.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
- Correspondence: (M.J.); (S.K.-K.)
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Mateusz Gruca
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 93-513 Lodz, Poland
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|