1
|
Morales SG, Garcia ASG, Martínez VV, Rodriguez MC, de la Prida Pidal VM, Montes-Bayón M. Direct analysis of engineered iron nanotubes and platinum nanorods: A challenge for single particle inductively coupled plasma mass spectrometry. Talanta 2025; 287:127600. [PMID: 39862518 DOI: 10.1016/j.talanta.2025.127600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
The use of inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS) for the characterization of micro and nanostructured materials is a growing field of research. In this work, the possibility of expanding the boundaries to anisotropic structures including solid Pt-nanorods and hollowed Fe2O3-nanotubes is presented. The obtained structures are evaluated by scanning electron microscopy (SEM), high-resolution electron microscopy (HR-TEM) and SP-ICP-MS techniques. Solid Pt-nanorods (191 ± 18 nm in diameter) showed important heterogeneity in their length, ranging 42-72 nm, due to sample preparation difficulties. The analysis by SP-ICP-MS confirmed the presence of two different populations of Pt/nanorods at 19 ± 4 fg and 41 ± 5 fg, respectively, yielding a mean value of 23 ± 12 fg Pt/rod and a length range of 38-67 nm, in agreement with TEM measurements. In the case of the two different sized double-walled Fe2O3-nanotubes of 900 nm and 1800 nm in length, the SP-ICP-MS measurements provided results of 16 ± 10 and 25 ± 4 fg Fe/nanotube, respectively. Out of this data, the layer thickness of the Fe2O3 nanotube wall was calculated, reporting values ranging between 20 ± 6 and 17 ± 4 nm, respectively, in good agreement with the TEM estimations (18 ± 4 nm). Considering the complexity of the highly anisotropic nano and micro-structures analyzed, SP-ICP-MS technique can be seen as a novel tool to evaluate the fabrication process of non-spherical nanomaterials as well as the sample preparation strategies, complementary to microscopic techniques and with higher sample throughput.
Collapse
Affiliation(s)
- S González Morales
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain
| | - A S González Garcia
- Department of Physics, Faculty of Sciences, University of Oviedo, C/ Leopoldo Calvo Sotelo 18, 33007, Oviedo, Spain
| | - V Vega Martínez
- Unit of Nanoporous Membranes, Scientific and Technological Resources, University of Oviedo, C/ Fernando Bonguera s/n, 33006, Oviedo, Spain
| | - M Corte Rodriguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain
| | - V M de la Prida Pidal
- Department of Physics, Faculty of Sciences, University of Oviedo, C/ Leopoldo Calvo Sotelo 18, 33007, Oviedo, Spain
| | - M Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain.
| |
Collapse
|
2
|
Raza A, Fatima P, Yasmeen B, Rana ZA, Ellakwa DES. From resistance to remedy: the role of clustered regularly interspaced short palindromic repeats system in combating antimicrobial resistance-a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2259-2273. [PMID: 39404843 DOI: 10.1007/s00210-024-03509-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 03/19/2025]
Abstract
The growing challenge of antimicrobial resistance (AMR) poses a significant and increasing risk to public health worldwide, necessitating innovative strategies to restore the efficacy of antibiotics. The precise genome-editing abilities of the CRISPR-Cas system have made it a potent instrument for directly targeting and eliminating antibiotic resistance genes. This review explored the mechanisms and applications of CRISPR-Cas systems in combating AMR. The latest developments in CRISPR technology have broadened its potential use, encompassing programmable antibacterial agents and improved diagnostic methods for antibiotic-resistant infections. Nevertheless, several challenges must be overcome for clinical success, including the survival of resistant bacteria, generation of anti-CRISPR proteins that reduce effectiveness, and genetic modifications that change target sequences. Additionally, the efficacy of CRISPR-Cas systems differs across bacterial species, making their universal application challenging. After overcoming these challenges, CRISPR-Cas has the potential to revolutionize AMR treatment, restore antibiotic efficacy, and reshape infection control.
Collapse
Affiliation(s)
- Ali Raza
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.
| | - Pakiza Fatima
- Department of Wildlife & Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Bushra Yasmeen
- Department of Wildlife & Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zulqarnain Amjad Rana
- Faculty of Veterinary Science, Khan Bahadar Choudhry Mushtaq Ahmed College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt.
| |
Collapse
|
3
|
Yu S, Rejinold NS, Choi G, Choy JH. Revolutionizing healthcare: inorganic medicinal nanoarchitectonics for advanced theranostics. NANOSCALE HORIZONS 2025; 10:460-483. [PMID: 39648727 DOI: 10.1039/d4nh00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Over the last two decades, advancements in nanomaterials and nanoscience have paved the path for the emergence of nano-medical convergence science, significantly impacting healthcare. In our review, we highlight how these advancements are applied in various biomedical technologies such as drug delivery systems, bio-imaging for diagnostic and therapeutic purposes. Recently, novel inorganic nanohybrid drugs have been developed, combining multifunctional inorganic nanomaterials with therapeutic agents (known as inorganic medicinal nanoarchitectonics). These innovative drugs are actively utilized in cutting-edge medical treatments, including targeted anti-cancer therapy, photo and radiation therapy, and immunotherapy. This review provides a detailed overview of the current development status of inorganic medicinal nanoarchitectonics and explores potential future directions in their advancements.
Collapse
Affiliation(s)
- Seungjin Yu
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Republic of Korea
- Tokyo Tech Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Institute of Science Tokyo, Yokohama 226853, Japan
| |
Collapse
|
4
|
Xie B, Xiao Z, Ling J, Peng Y, Chen T. Exploring the application of metal-based photothermal agents in photothermal therapy combined with immune checkpoint therapy. Front Pharmacol 2025; 16:1553158. [PMID: 40017598 PMCID: PMC11865196 DOI: 10.3389/fphar.2025.1553158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Photothermal therapy (PTT), a popular local treatment that uses heat to ablate tumors, has limited efficacy in addressing metastatic and deeply located tumors when used alone. Integrating PTT with immunotherapy not only yields a synergistic effect but also promotes cancer regression and confers the benefit of immune memory, which can surmount the challenges faced by PTT when used in isolation. Metal-based nanomaterials, renowned for their superior photothermal conversion efficiency and distinctive photochemical properties, have been extensively researched and applied in the field of PTT. This review summarizes the latest developments in combination therapies, with a specific focus on the combination of PTT and immune checkpoint therapy (ICT) for cancer treatment, including a comprehensive overview of the recent advancements in noble metal-based and 2D transition metal chalcogenides (TMDCs)-based photothermal agents, and their anticancer effect when combining PTT with immune checkpoint blockades (anti-CTLA-4 and anti-PD-L1) therapy. The goal of this review is to present an overview of the application, current challenges and future prospects of metal-based photothermal agents in PTT combined with ICT for cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yichao Peng
- Department of Pharmacy and General Surgery of Puning People’s Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China
| | - Tianfeng Chen
- Department of Pharmacy and General Surgery of Puning People’s Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China
| |
Collapse
|
5
|
Wu Y, Huang Z, Liu Y, He P, Wang Y, Yan L, Wang X, Gao S, Zhou X, Yoon CW, Sun K, Situ Y, Ho P, Zeng Y, Yuan Z, Zhu L, Zhou Q, Zhao Y, Liu T, Kwong GA, Chien S, Liu L, Wang Y. Ultrasound Control of Genomic Regulatory Toolboxes for Cancer Immunotherapy. Nat Commun 2024; 15:10444. [PMID: 39617755 PMCID: PMC11609292 DOI: 10.1038/s41467-024-54477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/11/2024] [Indexed: 01/25/2025] Open
Abstract
There remains a critical need for the precise control of CRISPR (clustered regularly interspaced short palindromic repeats)-based technologies. Here, we engineer a set of inducible CRISPR-based tools controllable by focused ultrasound (FUS), which can penetrate deep and induce localized hyperthermia for transgene activation. We demonstrate the capabilities of FUS-inducible CRISPR, CRISPR activation (CRISPRa), and CRISPR epigenetic editor (CRISPRee) in modulating the genome and epigenome. We show that FUS-CRISPR-mediated telomere disruption primes solid tumours for chimeric antigen receptor (CAR)-T cell therapy. We further deliver FUS-CRISPR in vivo using adeno-associated viruses (AAVs), followed by FUS-induced telomere disruption and the expression of a clinically validated antigen in a subpopulation of tumour cells, functioning as "training centers" to activate synthetic Notch (synNotch) CAR-T cells to produce CARs against a universal tumour antigen to exterminate neighboring tumour cells. The FUS-CRISPR(a/ee) toolbox hence allows the noninvasive and spatiotemporal control of genomic/epigenomic reprogramming for cancer treatment.
Collapse
Affiliation(s)
- Yiqian Wu
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA.
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China.
| | - Ziliang Huang
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yahan Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peixiang He
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yuxuan Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Liyanran Yan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xinhui Wang
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Shanzi Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xintao Zhou
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Chi Woo Yoon
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yinglin Situ
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Phuong Ho
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Zhou Yuan
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Linshan Zhu
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Thomas Liu
- Center for Functional MRI, University of California San Diego, La Jolla, CA, USA
| | - Gabriel A Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Shu Chien
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Longwei Liu
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA.
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Yingxiao Wang
- Shu Chien - Gene Lay Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA.
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Javid H, Oryani MA, Rezagholinejad N, Hashemzadeh A, Karimi-Shahri M. Unlocking the potential of RGD-conjugated gold nanoparticles: a new frontier in targeted cancer therapy, imaging, and metastasis inhibition. J Mater Chem B 2024; 12:10786-10817. [PMID: 39351647 DOI: 10.1039/d4tb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In the rapidly evolving field of cancer therapeutics, the potential of gold nanoparticles (AuNPs) conjugated with RGD peptides has emerged as a promising avenue for targeted therapy and imaging. Despite numerous studies demonstrating the effectiveness of RGD-conjugated AuNPs in specifically targeting tumor cells and enhancing radiation therapy (RT), a comprehensive review of these advancements is currently lacking. This review aims to fill this critical gap in the literature. Our analysis reveals that RGD-conjugated AuNPs have shown significant promise in improving the diagnosis and treatment of various types of cancer, including breast cancer. However, the full potential of this technology is yet to be realized. The development of multifunctional nanoplatforms incorporating AuNPs has opened new horizons for targeted therapy, dual-mode imaging, and inhibition of tumor growth and metastasis. This review is of paramount importance as it provides a comprehensive overview of the current state of research in this area, and highlights the areas where further research is needed. It is hoped that this review will inspire further investigations into this promising nanotechnology, ultimately leading to improved cancer diagnosis and therapy. Therefore, the findings presented in this review underscore the potential of AuNPs conjugated with RGD peptides as a revolutionary approach in cancer therapeutics. It is our fervent hope that this review will serve as a catalyst for further research in this exciting field.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
7
|
Huang PT, Chen YL, Lin YH, Wang CC, Chang HT. Functional gold nanoparticles for analysis and delivery of nucleic acids. J Food Drug Anal 2024; 32:252-273. [PMID: 39636773 PMCID: PMC11464036 DOI: 10.38212/2224-6614.3514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 12/07/2024] Open
Abstract
Gold nanoparticles (AuNPs) have become the rising stars in the field of nanotechnology and made a revolution in exploiting the profundity of genomics due to their distinguished properties such as stability, ease in preparation and conjugation, biocompatibility, and unique optical properties. These characteristics have greatly expanded their applications such as sensitive and selective quantitation of nucleic acids and as effective carriers for specifically delivering various important molecules/biomolecules to various targets, which are the cornerstone in treating genetic disorders. This review comprehensively discusses the most recent progress in utilization of AuNPs in quantitation and delivery of nucleic acids. The future prospects and challenges of various methods have also been illustrated. It is believed that researchers will continue to overcome the limitations in previous approaches and AuNPs will still play vital roles in the development of diagnosis and treatment of gene-related diseases.
Collapse
Affiliation(s)
- Po-Tsang Huang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Division of Pharmacy, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301,
Taiwan
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
| | - Yi-Hui Lin
- School of Pharmacy, China Medical University, Taichung 406040,
Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378,
Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302,
Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302,
Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan 33302,
Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305,
Taiwan
| |
Collapse
|
8
|
Zhao Y, Nie F, Liu W, He W, Guo Y. Preparation and exploration of anti-tumor activity of Poria cocos polysaccharide gold nanorods. Int J Biol Macromol 2024:135347. [PMID: 39260657 DOI: 10.1016/j.ijbiomac.2024.135347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
With the continuous advancement of nanotechnology, the application of gold nanorods (AuNRs) functionalized with polysaccharides in the realm of cancer photothermal therapy is garnering increasing attention. To harness photothermal therapy for cancer treatment, FLP-MPBA-AuNRs were successfully synthesized in this study for the first time, utilizing Poria cocos polysaccharides (FLP), mercaptophenylboronic acid (MPBA), and gold nanorods (AuNRs). FLP-MPBA-AuNRs is a nanomaterial characterized by a unique rod-shaped structure, featuring a long diameter of 29.3 nm and a short diameter of 6.5 nm, which conferred upon it exceptional photothermal stability and remarkable photothermal conversion efficiency. Under near-infrared light irradiation, FLP-MPBA-AuNRs elicited significant photothermal effects, effectively curtailing the proliferation of various cancer cells. Additionally, it impeded cancer progression by inducing cell apoptosis and releasing reactive oxygen species (ROS). Furthermore, FLP-MPBA-AuNRs suppressed the metastasis and growth of cancer cells in zebrafish models. In summary, FLP-MPBA-AuNRs showcased immense potential in cancer therapy by inhibiting tumor cell growth through photothermal and photodynamic mechanisms.
Collapse
Affiliation(s)
- Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenrui He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
9
|
Solomonov I, Locatelli I, Tortorella S, Unni M, Aharoni SL, Alchera E, Locatelli E, Maturi M, Venegoni C, Lucianò R, Salonia A, Corti A, Curnis F, Grasso V, Malamal G, Jose J, Comes Franchini M, Sagi I, Alfano M. Contrast enhanced photoacoustic detection of fibrillar collagen in the near infrared region-I. NANOSCALE ADVANCES 2024; 6:3655-3667. [PMID: 38989511 PMCID: PMC11232541 DOI: 10.1039/d4na00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
Fibrillar collagen accumulation emerges as a promising biomarker in several diseases, such as desmoplastic tumors and unstable atherosclerotic plaque. Gold nanorods (GNRs) hold great potential as contrast agents in high-resolution, biomedically safe, and non-invasive photoacoustic imaging (PAI). This study presents the design and characterization of a specialized imaging tool which exploits GNR assisted targeted photoacoustic imaging that is tailored for the identification of fibrillar collagen. In addition to the photoacoustic characterization of collagen in the NIR 1 and 2 regions, we demonstrate the detailed steps of conjugating a decoy to GNRs. This study serves as a proof of concept, that demonstrates that conjugated collagenase-1 (MMP-1) generates a distinct and collagen-specific photoacoustic signal, facilitating real-time visualization in the wavelength range of 700-970 nm (NIR I). As most of the reported studies utilized the endogenous contrast of collagen in the NIR II wavelength that has major limitations to perform in vivo deep tissue imaging, the approach that we are proposing is unique and it highlights the promise of MMP-1 decoy-functionalized GNRs as novel contrast agents for photoacoustic imaging of collagen in the NIR 1 region. To our knowledge this is the first time functionalized GNRs are optimized for the detection of fibrillar collagen and utilized in the field of non-invasive photoacoustic imaging that can facilitate a better prognosis of desmoplastic tumors and broken atherosclerotic plaques.
Collapse
Affiliation(s)
- Inna Solomonov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| | - Silvia Tortorella
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Manu Unni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Shay-Lee Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Mirko Maturi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Hospital and Scientific Institute Milan Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
- Vita-Salute San Raffaele University Milan Italy
| | - Angelo Corti
- Vita-Salute San Raffaele University Milan Italy
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute Milan Italy
| | - Flavio Curnis
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute Milan Italy
| | - Valeria Grasso
- FUJIFILM Visualsonics Inc. Amsterdam the Netherlands
- Faculty of Engineering, Institute for Materials Science, Christian-Albrecht University of Kiel Kiel Germany
| | | | - Jithin Jose
- FUJIFILM Visualsonics Inc. Amsterdam the Netherlands
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via P. Gobetti 85 40129 Bologna Italy
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science Rehovot 76100 Israel
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele Milan Italy
| |
Collapse
|
10
|
Khoshandam M, Soltaninejad H, Hamidieh AA, Hosseinkhani S. CRISPR, CAR-T, and NK: Current applications and future perspectives. Genes Dis 2024; 11:101121. [PMID: 38545126 PMCID: PMC10966184 DOI: 10.1016/j.gendis.2023.101121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 08/16/2023] [Indexed: 11/11/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy represents a breakthrough in personalized cancer treatments. In this regard, synthetic receptors comprised of antigen recognition domains, signaling, and stimulatory domains are used to reprogram T-cells to target tum or cells and destroy them. Despite the success of this approach in refractory B-cell malignancies, the optimal potency of CAR T-cell therapy for many other cancers, particularly solid tumors, has not been validated. Natural killer cells are powerful cytotoxic lymphocytes specialized in recognizing and dispensing the tumor cells in coordination with other anti-tumor immunity cells. Based on these studies, many investigations are focused on the accurate designing of CAR T-cells with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system or other novel gene editing tools that can induce hereditary changes with or without the presence of a double-stranded break into the genome. These methodologies can be specifically focused on negative controllers of T-cells, induce modifications to a particular gene, and produce reproducible, safe, and powerful allogeneic CAR T-cells for on-demand cancer immunotherapy. The improvement of the CRISPR/Cas9 innovation offers an adaptable and proficient gene-editing capability in activating different pathways to help natural killer cells interact with novel CARs to particularly target tumor cells. Novel achievements and future challenges of combining next-generation CRISPR-Cas9 gene editing tools to optimize CAR T-cell and natural killer cell treatment for future clinical trials toward the foundation of modern cancer treatments have been assessed in this review.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom branch 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Hossein Soltaninejad
- Department of stem cells technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran 15614, Iran
- Pediatric Cell Therapy and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 1417935840, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell Therapy and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 1417935840, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 15614, Iran
| |
Collapse
|
11
|
Saidi D, Obeidat M, Alsotari S, Ibrahim AA, Al-Buqain R, Wehaibi S, Alqudah DA, Nsairat H, Alshaer W, Alkilany AM. Formulation optimization of lyophilized aptamer-gold nanoparticles: Maintained colloidal stability and cellular uptake. Heliyon 2024; 10:e30743. [PMID: 38774322 PMCID: PMC11107208 DOI: 10.1016/j.heliyon.2024.e30743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Anti-nucleolin (NCL) aptamer AS1411 is the first anticancer aptamer tested in clinical trials. Gold nanoparticles (AuNP) have been widely exploited for various biomedical applications due to their unique functional properties. In this study, we evaluated the colloidal stability and targeting capacity of AS1411-funtionalized AuNP (AuNP/NCL-Apt) against MCF-7 breast cancer cell line before and after lyophilization. Trehalose, mannitol, and sucrose at various concentrations were evaluated to determine their cryoprotection effects. Our results indicate that sucrose at 10 % (w/v) exhibits the best cryoprotection effect and minimal AuNP/NCL-Apt aggregation as confirmed by UV-Vis spectroscopy and dynamic light scattering (DLS) measurements. Moreover, the lyophilized AuNP/NCL-Apt at optimized formulation maintained its targeting and cytotoxic functionality against MCF-7 cells as proven by the cellular uptake assays utilizing flow cytometry and confocal laser scanning microscopy (CLSM). Quantitative PCR (qPCR) analysis of nucleolin-target gene expression also confirmed the effectiveness of AuNP/NCL-Apt. This study highlights the importance of selecting the proper type and concentration of cryoprotectant in the typical nanoparticle lyophilization process and contributes to our understanding of the physical and biological properties of functionalized nanoparticles upon lyophilization.
Collapse
Affiliation(s)
- Dalya Saidi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Marya Obeidat
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Shrouq Alsotari
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Abed-Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E. Gate City Blvd, Greensboro, NC, 27401, USA
| | - Rula Al-Buqain
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | | |
Collapse
|
12
|
Hao G, Qi Z, Li L, Xu ZP. Investigation of the mucin-nanoparticle interactions via real-time monitoring by microbalance and kinetic model simulation. J Colloid Interface Sci 2024; 661:588-597. [PMID: 38308897 DOI: 10.1016/j.jcis.2024.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
Interactions between nanoparticles and the mucus layer are crucial to understand the behaviours in biological environments and design drug delivery systems. In this study, we developed a kinetic deposition model for the dynamic mucin-nanoparticle interactions using quartz crystal microbalance with dissipation (QCM-D). We investigated the effects of the physiochemical properties of several nanoparticles (including size, charge, and shape) and the physiological conditions on the mucin-nanoparticle interaction. Interestingly, layered double hydroxide (LDH) nanoparticles showed stronger interactions with the mucus layer compared to other types of nanoparticles due to their unique plate-like morphology. In specific for sheet-like LDH nanoparticles, our model found that their equilibrium adsorption capacity (Qe) followed the Langmuir adsorption isotherm, and the adsorption rate (k1) increased proportionally with the nanoparticle concentration. In addition, the particle size and thickness affected Qe and the surface coverage. Furthermore, bovine serum albumin (BSA) coating dramatically increased k1 of LDH nanoparticles. We proposed a novel mechanism to elucidate mucin-nanoparticle interactions, shedding light on the synergistic roles of drag force (Fd), repulsive force (Fr), and adsorptive force (Fa). These findings offer valuable insights into the complex mucin-nanoparticle interactions and provide guidance for the design of drug delivery systems.
Collapse
Affiliation(s)
- Guanyu Hao
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi Qi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
13
|
Deleuziere M, Benoist É, Quelven I, Gras E, Amiens C. [ 18F]-Radiolabelled Nanoplatforms: A Critical Review of Their Intrinsic Characteristics, Radiolabelling Methods, and Purification Techniques. Molecules 2024; 29:1537. [PMID: 38611815 PMCID: PMC11013168 DOI: 10.3390/molecules29071537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A wide range of nano-objects is found in many applications of our everyday life. Recognition of their peculiar properties and ease of functionalization has prompted their engineering into multifunctional platforms that are supposed to afford efficient tools for the development of biomedical applications. However, bridging the gap between bench to bedside cannot be expected without a good knowledge of their behaviour in vivo, which can be obtained through non-invasive imaging techniques, such as positron emission tomography (PET). Their radiolabelling with [18F]-fluorine, a technique already well established and widely used routinely for PET imaging, with [18F]-FDG for example, and in preclinical investigation using [18F]-radiolabelled biological macromolecules, has, therefore, been developed. In this context, this review highlights the various nano-objects studied so far, the reasons behind their radiolabelling, and main in vitro and/or in vivo results obtained thereof. Then, the methods developed to introduce the radioelement are presented. Detailed indications on the chemical steps involved are provided, and the stability of the radiolabelling is discussed. Emphasis is then made on the techniques used to purify and analyse the radiolabelled nano-objects, a point that is rarely discussed despite its technical relevance and importance for accurate imaging. The pros and cons of the different methods developed are finally discussed from which future work can develop.
Collapse
Affiliation(s)
- Maëlle Deleuziere
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.D.); (É.B.)
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Éric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.D.); (É.B.)
| | - Isabelle Quelven
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée, UMR 5069, CNRS—Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Catherine Amiens
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
14
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
15
|
Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis 2024; 11:268-282. [PMID: 37588217 PMCID: PMC10425811 DOI: 10.1016/j.gendis.2023.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
CRISPR/Cas9 is an effective gene editing tool with broad applications for the prevention or treatment of numerous diseases. It depends on CRISPR (clustered regularly interspaced short palindromic repeats) as a bacterial immune system and plays as a gene editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9 compared to other editing approaches, it has been broadly investigated to treat numerous hereditary and acquired illnesses, including cancers, hemolytic diseases, immunodeficiency disorders, cardiovascular diseases, visual maladies, neurodegenerative conditions, and a few X-linked disorders. CRISPR/Cas9 system has been used to treat cancers through a variety of approaches, with stable gene editing techniques. Here, the applications and clinical trials of CRISPR/Cas9 in various illnesses are described. Due to its high precision and efficiency, CRISPR/Cas9 strategies may treat gene-related illnesses by deleting, inserting, modifying, or blocking the expression of specific genes. The most challenging barrier to the in vivo use of CRISPR/Cas9 like off-target effects will be discussed. The use of transfection vehicles for CRISPR/Cas9, including viral vectors (such as an Adeno-associated virus (AAV)), and the development of non-viral vectors is also considered.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14155-6463, Iran
| | - Hossein Soltaninejad
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14117-13116, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
16
|
Asl FD, Mousazadeh M, Taji S, Bahmani A, Khashayar P, Azimzadeh M, Mostafavi E. Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine (Lond) 2023; 18:279-302. [PMID: 37125616 PMCID: PMC10242436 DOI: 10.2217/nnm-2022-0248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/08/2023] [Indexed: 05/02/2023] Open
Abstract
AIDS causes increasing mortality every year. With advancements in nanomedicine, different nanomaterials (NMs) have been applied to treat AIDS and overcome its limitations. Among different NMs, nanoparticles (NPs) can act as nanocarriers due to their enhanced solubility, sustained release, targeting abilities and facilitation of drug-dose reductions. This review discusses recent advancements in therapeutics for AIDS/HIV using various NMs, mainly focused on three classifications: polymeric, liposomal and inorganic NMs. Polymeric dendrimers, polyethylenimine-NPs, poly(lactic-co-glycolic acid)-NPs, chitosan and the use of liposomal-based delivery systems and inorganic NPs, including gold and silver NPs, are explored. Recent advances, current challenges and future perspectives on the use of these NMs for better management of HIV/AIDS are also discussed.
Collapse
Affiliation(s)
- Fateme Davarani Asl
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 88138-33435, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Shirinsadat Taji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
- Institute for Genetics, University of Cologne, Cologne, D-50674, Germany
| | - Abbas Bahmani
- Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec & Ghent University, Ghent, 9050, Belgium
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 89195-999, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Zhan X, Yan J, Tang H, Xia D, Lin H. Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14122654. [PMID: 36559152 PMCID: PMC9785922 DOI: 10.3390/pharmaceutics14122654] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The widespread occurrence of bacterial infections and their increased resistance to antibiotics has led to the development of antimicrobial coatings for multiple medical implants. Owing to their desirable properties, gold nanoparticles (AuNPs) have been developed as antibacterial agents. This systematic investigation sought to analyze the antibacterial effects of implant material surfaces modified with AuNPs. The data from 27 relevant studies were summed up. The included articles were collected from September 2011 to September 2021. According to the retrieved literature, we found that medical implants modified by AuNPs have good antibacterial effects against gram-positive and gram-negative bacteria, and the antibacterial effects would be improved by near-infrared (NIR) radiation.
Collapse
Affiliation(s)
- Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Jianglong Yan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Hao Tang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
- Correspondence: (D.X.); (H.L.)
| | - Hong Lin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
- Correspondence: (D.X.); (H.L.)
| |
Collapse
|
18
|
Diez‐Pascual AM, Rahdar A. Functional Nanomaterials in Biomedicine: Current Uses and Potential Applications. ChemMedChem 2022; 17:e202200142. [PMID: 35729066 PMCID: PMC9544115 DOI: 10.1002/cmdc.202200142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Indexed: 11/07/2022]
Abstract
Nanomaterials, that is, materials made up of individual units between 1 and 100 nanometers, have lately involved a lot of attention since they offer a lot of potential in many fields, including pharmacy and biomedicine, owed to their exceptional physicochemical properties arising from their high surface area and nanoscale size. Smart engineering of nanostructures through appropriate surface or bulk functionalization endows them with multifunctional capabilities, opening up new possibilities in the biomedical field such as biosensing, drug delivery, imaging, medical implants, cancer treatment and tissue engineering. This article highlights up-to-date research in nanomaterials functionalization for biomedical applications. A summary of the different types of nanomaterials and the surface functionalization strategies is provided. Besides, the use of nanomaterials in diagnostic imaging, drug/gene delivery, regenerative medicine, cancer treatment and medical implants is reviewed. Finally, conclusions and future perspectives are provided.
Collapse
Affiliation(s)
- Ana María Diez‐Pascual
- Universidad de AlcaláDepartamento de Química Analítica Química Física e Ingeniería QuímicaCarretera Madrid-Barcelona Km. 33.628871Alcalá de Henares, MadridSpain
| | - Abbas Rahdar
- Department of PhysicsUniversity of ZabolZabol98613-35856Iran
| |
Collapse
|
19
|
Hejabi F, Abbaszadeh MS, Taji S, O’Neill A, Farjadian F, Doroudian M. Nanocarriers: A novel strategy for the delivery of CRISPR/Cas systems. Front Chem 2022; 10:957572. [PMID: 36092658 PMCID: PMC9450496 DOI: 10.3389/fchem.2022.957572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022] Open
Abstract
In recent decades, clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) has become one of the most promising genome-editing tools for therapeutic purposes in biomedical and medical applications. Although the CRISPR/Cas system has truly revolutionized the era of genome editing, the safe and effective delivery of CRISPR/Cas systems represents a substantial challenge that must be tackled to enable the next generation of genetic therapies. In addition, there are some challenges in the in vivo delivery to the targeted cells/tissues. Nanotechnology-based drug delivery systems can be employed to overcome this issue. This review discusses different types and forms of CRISPR/Cas systems and the current CRISPR/Cas delivery systems, including non-viral carriers such as liposomes, polymeric, and gold particles. The focus then turns to the viral nanocarriers which have been recently used as a nanocarrier for CRISPR/Cas delivery.
Collapse
Affiliation(s)
- Faranak Hejabi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Shirinsadat Taji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Andrew O’Neill
- Department of Clinical Medicine, Tallaght University Hospital and Trinity College Dublin, Dublin, Ireland
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Mohammad Doroudian,
| |
Collapse
|
20
|
Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update. Pharmaceutics 2022; 14:pharmaceutics14071375. [PMID: 35890271 PMCID: PMC9323899 DOI: 10.3390/pharmaceutics14071375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor phototherapies are light-mediated tumor treatment modalities, which usually refer to tumor photothermal therapy (PTT) and photodynamic therapy (PDT). Due to the outstanding spatial-temporal control over treatment through light irradiation, tumor phototherapies display extremely low side effects during treatment and are believed to be a tumor treatment method with a clinical translation potential. However, current tumor phototherapy nanoplatforms face obstacles, including light irradiation-induced skin burning, tumor hypoxia microenvironments, limited light penetration depth, et al. Therefore, one important research direction is developing a tumor phototherapy nanoplatform with multifunctionality and enhanced pharmacological effects to overcome the complexity of tumor treatment. On the other hand, cyclodextrins (CDs) are starch-originated circular oligosaccharides with negligible toxicity and have been used to form supermolecular nanostructures through a host–guest interaction between the inner cavity of CDs and functional biomolecules. In the past few years, numerous studies have focused on CD-based multifunctional tumor phototherapy nanoplatforms with an enhanced photoeffect, responsive morphological transformation, and elevated drug bioavailability. This review focuses on the preparation methods of CD-based tumor phototherapy nanoplatforms and their unique physiochemical properties for improving anti-tumor pharmacological efficacy.
Collapse
|
21
|
Liu X, Wu Y, Wang Y, Wei H, Guo J, Yang Y. Extraction of Au( iii) from hydrochloric acid media using a novel amide-based ionic liquid. NEW J CHEM 2022. [DOI: 10.1039/d2nj04437d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A study on the performance of selective extraction of Au(iii) using a novel amide-based IL.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Miniatry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yang Wu
- Key Laboratory for Special Functional Aggregate Materials of Education Miniatry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yangyang Wang
- Key Laboratory for Special Functional Aggregate Materials of Education Miniatry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Huiying Wei
- Key Laboratory for Special Functional Aggregate Materials of Education Miniatry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jinxin Guo
- Key Laboratory for Special Functional Aggregate Materials of Education Miniatry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Miniatry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|