1
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
2
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
3
|
Grandhi S, Al-Tabakha M, Avula PR. Enhancement of Liver Targetability through Statistical Optimization and Surface Modification of Biodegradable Nanocapsules Loaded with Lamivudine. Adv Pharmacol Pharm Sci 2023; 2023:8902963. [PMID: 38029229 PMCID: PMC10676277 DOI: 10.1155/2023/8902963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
The intention of the current work was to develop and optimize the formulation of biodegradable polymeric nanocapsules for lamivudine (LMV) in order to obtain desired physical characteristics so as to have improved liver targetability. Nanocapsules were prepared in this study as aqueous-core nanocapsules (ACNs) with poly(lactide-co-glycolide) using a modified multiple emulsion technique. LMV was taken as a model drug to investigate the potential of ACNs developed in this work in achieving the liver targetability. Three formulations factors were chosen and 33 factorial design was adopted. The selected formulation factors were optimized statistically so as to have the anticipated characteristics of the ACNs viz. maximum entrapment efficiency, minimum particle size, and less drug release rate constant. The optimized LMV-ACNs were found to have 71.54 ± 1.93% of entrapment efficiency and 288.36 ± 2.53 nm of particle size with zeta potential of -24.7 ± 1.2 mV and 0.095 ± 0.006 h-1 of release rate constant. This optimized formulation was subjected to surface modification by treating with sodium lauryl sulphate (SLS), which increased the zeta potential to a maximum of -41.6 ± 1.3 mV at a 6 mM concentration of SLS. The results of in vivo pharmacokinetics from blood and liver tissues indicated that hepatic bioavailability of LMV was increased from 13.78 ± 3.48 μg/mL ∗ h for LMV solution to 32.94 ± 5.12 μg/mL ∗ h for the optimized LMV-ACNs and to 54.91 ± 6.68 μg/mL ∗ h for the surface-modified LMV-ACNs.
Collapse
Affiliation(s)
- Srikar Grandhi
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur 522213, India
| | - Moawia Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, UAE
- Centre of Medical and Bio-Allied Health Sciences Research Centre, Ajman University, P.O. Box 346, Ajman, UAE
| | - Prameela Rani Avula
- University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| |
Collapse
|
4
|
Zhao X, Amevor FK, Xue X, Wang C, Cui Z, Dai S, Peng C, Li Y. Remodeling the hepatic fibrotic microenvironment with emerging nanotherapeutics: a comprehensive review. J Nanobiotechnology 2023; 21:121. [PMID: 37029392 PMCID: PMC10081370 DOI: 10.1186/s12951-023-01876-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Liver fibrosis could be the last hope for treating liver cancer and remodeling of the hepatic microenvironment has emerged as a strategy to promote the ablation of liver fibrosis. In recent years, especially with the rapid development of nanomedicine, hepatic microenvironment therapy has been widely researched in studies concerning liver cancer and fibrosis. In this comprehensive review, we summarized recent advances in nano therapy-based remodeling of the hepatic microenvironment. Firstly, we discussed novel strategies for regulatory immune suppression caused by capillarization of liver sinusoidal endothelial cells (LSECs) and macrophage polarization. Furthermore, metabolic reprogramming and extracellular matrix (ECM) deposition are caused by the activation of hepatic stellate cells (HSCs). In addition, recent advances in ROS, hypoxia, and impaired vascular remodeling in the hepatic fibrotic microenvironment due to ECM deposition have also been summarized. Finally, emerging nanotherapeutic approaches based on correlated signals were discussed in this review. We have proposed novel strategies such as engineered nanotherapeutics targeting antigen-presenting cells (APCs) or direct targeting T cells in liver fibrotic immunotherapy to be used in preventing liver fibrosis. In summary, this comprehensive review illustrated the opportunities in drug targeting and nanomedicine, and the current challenges to be addressed.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- , No. 1166, Liu Tai Avenue, Wenjiang district, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Kumar V, Sethi B, Staller DW, Xin X, Ma J, Dong Y, Talmon GA, Mahato RI. Anti-miR-96 and Hh pathway inhibitor MDB5 synergistically ameliorate alcohol-associated liver injury in mice. Biomaterials 2023; 295:122049. [PMID: 36827892 PMCID: PMC9998370 DOI: 10.1016/j.biomaterials.2023.122049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
Alcohol-associated liver disease (ALD) and its complications are significant health problems worldwide. Several pathways in ALD are influenced by alcohol that drives inflammation, fatty acid metabolism, and fibrosis. Although miR-96 has become a key regulator in several liver diseases, its function in ALD remains unclear. In contrast, sonic hedgehog (SHH) signaling has a well-defined role in liver disease through influencing the activation of hepatic stellate cells (HSCs) and the inducement of liver fibrosis. In this study, we investigated the expression patterns of miR-96 and Hh molecules in mouse and human liver samples. We showed that miR-96 and Shh were upregulated in ethanol-fed mice. Furthermore, alcoholic hepatitis (AH) patient specimens also showed upregulated FOXO3a, TGF-β1, SHH, and GLI2 proteins. We then examined the effects of Hh inhibitor MDB5 and anti-miR-96 on inflammatory and extracellular matrix (ECM)-related genes. We identified FOXO3 and SMAD7 as direct target genes of miR-96. Inhibition of miR-96 decreased the expression of these genes in vitro in AML12 cells, HSC-T6 cells, and in vivo in ALD mice. Furthermore, MDB5 decreased HSCs activation and the expression of ECM-related genes, such as Gli1, Tgf-β1, and collagen. Lipid nanoparticles (LNPs) loaded with the combination of MDB5, and anti-miR-96 ameliorated ALD in mice. Our study demonstrated that this combination therapy could serve as a new therapeutic target for ALD.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dalton W Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Niu X, Meng Y, Wang Y, Li G. Established new compound IMB16-4 self-emulsifying drug delivery systems for increasing oral bioavailability and enhancing anti-hepatic fibrosis effect. Biomed Pharmacother 2022; 154:113657. [PMID: 36942601 DOI: 10.1016/j.biopha.2022.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Liver fibrosis results from the chronic liver injury and no specific medical therapy is approved so far. Recently, new compound, N-(3,4,5-trichlorophenyl) - 2 (3-nitrobenzenesulfonamido) benzamide, referred to as IMB16-4, was developed to resist liver fibrosis. However, IMB16-4 displays poor aqueous solubility and poor oral bioavailability. To increase the dissolution rate, improve the oral bioavailability and enhance the anti-hepatic fibrosis action of IMB16-4, IMB16-4 self-emulsifying drug delivery systems (SEDDS) with negative charge or positive charge were prepared using simple stirring, respectively. Their stability, oral bioavailability and anti-liver fibrosis effect were evaluated. The results showed IMB16-4 SEDDS in simulated gastric juice were nearly spherical with the diameter of 100~200 nm and possessed good stability in 30 days. The oral bioavailability of IMB16-4 SEDDS with negative charge and positive charge were increased to 33 folds and 58 folds compared with that of pure IMB16-4, respectively. In bile duct ligation (BDL) rats, IMB16-4 SEDDS attenuated the degree of liver damage and decreased collagen accumulation. In addition, IMB16-4 SEDDS with negative charge easily accumulated in the liver and alleviated hepatic fibrosis by TGF-β/Smad signaling. These findings indicate that IMB16- 4 SEDDS may be a potential therapy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xia Niu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Yanan Meng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China.
| | - Guiling Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
7
|
Warner JB, Guenthner SC, Hardesty JE, McClain CJ, Warner DR, Kirpich IA. Liver-specific drug delivery platforms: Applications for the treatment of alcohol-associated liver disease. World J Gastroenterol 2022; 28:5280-5299. [PMID: 36185629 PMCID: PMC9521517 DOI: 10.3748/wjg.v28.i36.5280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is a common chronic liver disease and major contributor to liver disease-related deaths worldwide. Despite its pre-valence, there are few effective pharmacological options for the severe stages of this disease. While much pre-clinical research attention is paid to drug development in ALD, many of these experimental therapeutics have limitations such as poor pharmacokinetics, poor efficacy, or off-target side effects due to systemic administration. One means of addressing these limitations is through liver-targeted drug delivery, which can be accomplished with different platforms including liposomes, polymeric nanoparticles, exosomes, bacteria, and adeno-associated viruses, among others. These platforms allow drugs to target the liver passively or actively, thereby reducing systemic circulation and increasing the ‘effective dose’ in the liver. While many studies, some clinical, have applied targeted delivery systems to other liver diseases such as viral hepatitis or hepatocellular carcinoma, only few have investigated their efficacy in ALD. This review provides basic information on these liver-targeting drug delivery platforms, including their benefits and limitations, and summarizes the current research efforts to apply them to the treatment of ALD in rodent models. We also discuss gaps in knowledge in the field, which when addressed, may help to increase the efficacy of novel therapies and better translate them to humans.
Collapse
Affiliation(s)
- Jeffrey Barr Warner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Steven Corrigan Guenthner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Josiah Everett Hardesty
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Craig James McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Veterans Health Administration, Robley Rex Veterans Medical Center, Louisville, KY 40206, United States
| | - Dennis Ray Warner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Irina Andreyevna Kirpich
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| |
Collapse
|