1
|
Ribeiro A, Loureiro R, Cabral-Marques H. Enhancing Cannabinoid Bioavailability in Pain Management: The Role of Cyclodextrins. Molecules 2024; 29:5340. [PMID: 39598730 PMCID: PMC11596380 DOI: 10.3390/molecules29225340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic pain (CP), including pain related to cancer, affects approximately 2 billion people worldwide, significantly diminishing quality of life and imposing socio-economic burdens. Current treatments often provide limited relief and may cause adverse effects, demanding more effective alternatives. Natural compounds from Cannabis sativa L., particularly cannabinoids like THC and CBD, exhibit analgesic and anti-inflammatory properties, but their therapeutic use is restricted by poor solubility and low bioavailability. Cyclodextrins (CDs) and cyclic oligosaccharides may encapsulate hydrophobic drugs in order to enhance their solubility and stability, offering a promising solution to these challenges. This study explores the formation of CD inclusion complexes with cannabinoids and specific terpenes, such as D-limonene (LIM), beta-caryophyllene (BCP), and gamma-terpinene (γ-TPN), aiming to improve pharmacokinetic profiles and therapeutic efficacy. We discuss analytical techniques for characterizing these complexes and their mechanisms of action, highlighting the potential of CDs to optimize drug formulations. The integration of CDs in cannabinoid therapies may enhance patient compliance and treatment outcomes in CP management. Future research should focus on innovative formulations and delivery systems to maximize the clinical applications of those compounds.
Collapse
Affiliation(s)
| | | | - Helena Cabral-Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.R.); (R.L.)
| |
Collapse
|
2
|
Zell L, Hofer TS, Schubert M, Popoff A, Höll A, Marschhofer M, Huber-Cantonati P, Temml V, Schuster D. Impact of 2-hydroxypropyl-β-cyclodextrin inclusion complex formation on dopamine receptor-ligand interaction - A case study. Biochem Pharmacol 2024; 226:116340. [PMID: 38848779 DOI: 10.1016/j.bcp.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The octanol-water distribution coefficient (logP), used as a measure of lipophilicity, plays a major role in the drug design and discovery processes. While average logP values remain unchanged in approved oral drugs since 1983, current medicinal chemistry trends towards increasingly lipophilic compounds that require adapted analytical workflows and drug delivery systems. Solubility enhancers like cyclodextrins (CDs), especially 2-hydroxypropyl-β-CD (2-HP-β-CD), have been studied in vitro and in vivo investigating their ADMET (adsorption, distribution, metabolism, excretion and toxicity)-related properties. However, data is scarce regarding the applicability of CD inclusion complexes (ICs) in vitro compared to pure compounds. In this study, dopamine receptor (DR) ligands were used as a case study, utilizing a combined in silico/in vitro workflow. Media-dependent solubility and IC stoichiometry were investigated using HPLC. NMR was used to observe IC formation-caused chemical shift deviations while in silico approaches utilizing basin hopping global minimization were used to propose putative IC binding modes. A cell-based in vitro homogeneous time-resolved fluorescence (HTRF) assay was used to quantify ligand binding affinity at the DR subtype 2 (D2R). While all ligands showed increased solubility using 2-HP-β-CD, they differed regarding IC stoichiometry and receptor binding affinity. This case study shows that IC-formation was ligand-dependent and sometimes altering in vitro binding. Therefore, IC complex formation can't be recommended as a general means of improving compound solubility for in vitro studies as they may alter ligand binding.
Collapse
Affiliation(s)
- Lukas Zell
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, Center for Biochemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Department of Chemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Alexander Popoff
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Anna Höll
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Moritz Marschhofer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Petra Huber-Cantonati
- Department of Pharmaceutical Biology, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Veronika Temml
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria.
| |
Collapse
|
3
|
O’Sullivan SE, Jensen SS, Kolli AR, Nikolajsen GN, Bruun HZ, Hoeng J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals (Basel) 2024; 17:244. [PMID: 38399459 PMCID: PMC10892205 DOI: 10.3390/ph17020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The poor physicochemical properties of cannabidiol (CBD) hamper its clinical development. The aim of this review was to examine the literature to identify novel oral products and delivery strategies for CBD, while assessing their clinical implications and translatability. Evaluation of the published literature revealed that oral CBD strategies are primarily focused on lipid-based and emulsion solutions or encapsulations, which improve the overall pharmacokinetics (PK) of CBD. Some emulsion formulations demonstrate more rapid systemic delivery. Variability in the PK effects of different oral CBD products is apparent across species. Several novel administration routes exist for CBD delivery that may offer promise for specific indications. For example, intranasal administration and inhalation allow quick delivery of CBD to the plasma and the brain, whereas transdermal and transmucosal administration routes deliver CBD systemically more slowly. There are limited but promising data on novel delivery routes such as intramuscular and subcutaneous. Very limited data show that CBD is generally well distributed across tissues and that some CBD products enable increased delivery of CBD to different brain regions. However, evidence is limited regarding whether changes in CBD PK profiles and tissue distribution equate to superior therapeutic efficacy across indications and whether specific CBD products might be suited to particular indications.
Collapse
Affiliation(s)
| | - Sanne Skov Jensen
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Aditya Reddy Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland;
| | | | - Heidi Ziegler Bruun
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Julia Hoeng
- Vectura Fertin Pharma, 4058 Basel, Switzerland;
| |
Collapse
|
4
|
Koch N, Jennotte O, Lechanteur A, Deville M, Charlier C, Cardot JM, Chiap P, Evrard B. An Intravenous Pharmacokinetic Study of Cannabidiol Solutions in Piglets through the Application of a Validated Ultra-High-Pressure Liquid Chromatography Coupled to Tandem Mass Spectrometry Method for the Simultaneous Quantification of CBD and Its Carboxylated Metabolite in Plasma. Pharmaceutics 2024; 16:140. [PMID: 38276510 PMCID: PMC10820640 DOI: 10.3390/pharmaceutics16010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Cannabidiol (CBD) has multiple therapeutic benefits that need to be maximized by optimizing its bioavailability. Numerous formulations are therefore being developed and their pharmacokinetics need to be studied, requiring analytical methods and data from intravenous administration. As CBD is susceptible to hepatic metabolism, the requirement of any method is to quantify metabolites such as 7-COOH-CBD. We demonstrated that CBD and 7-COOH-CBD could be simultaneously and correctly quantified in piglet plasma by using an UHPLC-MS/MS technique. The validated method allowed for an accurate bioanalysis of an intravenously injected solution consisting of CBD-HPβCD complexes. The experimental pharmacokinetic profile of CBD showed multi-exponential decay characterized by a fast apparent distribution half-life (0.25 h) and an elimination half-life of two hours. The profile of 7-COOH-CBD was not linked with the first-pass metabolism, since 80% of the maximum metabolite concentration was reached at the first sampling time point, without any decrease during the period of study. A two-compartment model was optimal to describe the experimental CBD profile. This model allowed us to calculate macro-micro constants and volumes of distribution (Vss = 3260.35 ± 2286.66 mL) and clearance (1514.5 ± 261.16 mL·h-1), showing that CBD is rapidly distributed to peripheral tissues once injected and slowly released into the bloodstream.
Collapse
Affiliation(s)
- Nathan Koch
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium; (O.J.); (A.L.); (B.E.)
| | - Olivier Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium; (O.J.); (A.L.); (B.E.)
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium; (O.J.); (A.L.); (B.E.)
| | - Marine Deville
- Department of Toxicology, Center for Interdisciplinary Research on Medicines (CIRM), Academic Hospital of Liège, 4000 Liège, Belgium; (M.D.); (C.C.); (P.C.)
| | - Corinne Charlier
- Department of Toxicology, Center for Interdisciplinary Research on Medicines (CIRM), Academic Hospital of Liège, 4000 Liège, Belgium; (M.D.); (C.C.); (P.C.)
| | | | - Patrice Chiap
- Department of Toxicology, Center for Interdisciplinary Research on Medicines (CIRM), Academic Hospital of Liège, 4000 Liège, Belgium; (M.D.); (C.C.); (P.C.)
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium; (O.J.); (A.L.); (B.E.)
| |
Collapse
|
5
|
Hossain KR, Alghalayini A, Valenzuela SM. Current Challenges and Opportunities for Improved Cannabidiol Solubility. Int J Mol Sci 2023; 24:14514. [PMID: 37833962 PMCID: PMC10572536 DOI: 10.3390/ijms241914514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Cannabidiol (CBD), derived from the cannabis plant, has gained significant attention due to its potential therapeutic benefits. However, one of the challenges associated with CBD administration is its low bioavailability, which refers to the fraction of an administered dose that reaches systemic circulation. This limitation necessitates the exploration of various approaches to enhance the bioavailability of CBD, thus helping to maximize its therapeutic potential. A variety of approaches are now emerging, including nanoemulsion-based systems, lipid-based formulations, prodrugs, nanocarriers, and alternative routes of administration, which hold promise for improving the bioavailability of CBD and pave the way for novel formulations that maximize the therapeutic potential of CBD in various medical conditions. This opinion piece presents the current understanding surrounding CBD bioavailability and considers strategies aimed at improving both its absorption and its bioavailability.
Collapse
Affiliation(s)
- Khondker Rufaka Hossain
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.R.H.); (A.A.)
| | - Amani Alghalayini
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.R.H.); (A.A.)
- ARC Research Hub for Integrated Device for End-User Analysis at Low-Levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Stella M. Valenzuela
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.R.H.); (A.A.)
- ARC Research Hub for Integrated Device for End-User Analysis at Low-Levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
6
|
Román-Vargas Y, Porras-Arguello JD, Blandón-Naranjo L, Pérez-Pérez LD, Benjumea DM. Evaluation of the Analgesic Effect of High-Cannabidiol-Content Cannabis Extracts in Different Pain Models by Using Polymeric Micelles as Vehicles. Molecules 2023; 28:molecules28114299. [PMID: 37298776 DOI: 10.3390/molecules28114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Currently, cannabis is considered an attractive option for the treatment of various diseases, including pain management. Thus, developing new analgesics is paramount for improving the health of people suffering from chronic pain. Safer natural derivatives such as cannabidiol (CBD) have shown excellent potential for the treatment of these diseases. This study aimed to evaluate the analgesic effect of a CBD-rich cannabis extract (CE) encapsulated in polymeric micelles (CBD/PMs) using different pain models. The PEG-PCL polymers were characterized by gel permeation chromatography and 1H-NMR spectroscopy. PMs were prepared by solvent evaporation and characterized by dynamic light scattering (DLS) and transmission electron microscopy. The analgesic activity of CBD/PMs and nonencapsulated CE rich in CBD (CE/CBD) was evaluated using mouse thermal, chemical, and mechanical pain models. The acute toxicity of the encapsulated CE was determined by oral administration in mice at a dose of 20 mg/kg for 14 days. The release of CBD from the nanoparticles was assessed in vitro using a dialysis experiment. CBD/PMs with an average hydrodynamic diameter of 63.8 nm obtained from a biocompatible polyethylene glycol-block-polycaprolactone copolymer were used as nanocarriers for the extract formulations with 9.2% CBD content, which corresponded with a high encapsulation efficiency of 99.9%. The results of the pharmacological assays indicated that orally administered CBD/PMs were safe and exerted a better analgesic effect than CE/CBD. The micelle formulation had a significant analgesic effect in a chemical pain model, reaching a percentage of analgesia of 42%. CE was successfully encapsulated in a nanocarrier, providing better stability. Moreover, it proved to be more efficient as a carrier for CBD release. The analgesic activity of CBD/PMs was higher than that of free CE, implying that encapsulation is an efficient strategy for improving stability and functionality. In conclusion, CBD/PMs could be promising therapeutics for pain management in the future.
Collapse
Affiliation(s)
- Yoreny Román-Vargas
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 1226, Colombia
| | - Julián David Porras-Arguello
- Grupo de Investigación Macromoléculas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 476, Bogotá 11001, Colombia
| | - Lucas Blandón-Naranjo
- Grupo Interdisciplinario de Estudios Moleculares-GIEM, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 1226, Colombia
| | - León Darío Pérez-Pérez
- Grupo de Investigación Macromoléculas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 476, Bogotá 11001, Colombia
| | - Dora María Benjumea
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 1226, Colombia
| |
Collapse
|
7
|
Changsan N, Sawatdee S, Suedee R, Chunhachaichana C, Srichana T. Aqueous cannabidiol β-cyclodextrin complexed polymeric micelle nasal spray to attenuate in vitro and ex-vivo SARS-CoV-2-induced cytokine storms. Int J Pharm 2023; 640:123035. [PMID: 37182795 PMCID: PMC10181874 DOI: 10.1016/j.ijpharm.2023.123035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Cannabidiol (CBD) has a number of biological effects by acting on the cannabinoid receptors CB1 and CB2. CBD may be involved in anti-inflammatory processes via CB1 and CB2 receptors, resulting in a decrease of pro-inflammatory cytokines. However, CBD's poor aqueous solubility is a major issue in pharmaceutical applications. The aim of the present study was to develop and evaluate a CBD nasal spray solution. A water-soluble CBD was prepared by complexation with β-cyclodextrin (β-CD) at a stoichiometric ratio of 1:1 and forming polymeric micelles using poloxamer 407. The mixture was then lyophilized and characterized using FT-IR, DSC, and TGA. CBD-β-CD complex-polymeric micelles were formulated for nasal spray drug delivery. The physicochemical properties of the CBD-β-CD complex-polymeric micelle nasal spray solution (CBD-β-CDPM-NS) were assessed. The results showed that the CBD content in the CBD-β-CD complex polymeric micelle powder was 102.1 ± 0.5%. The CBD-β-CDPM-NS was a clear colorless isotonic solution. The particle size, zeta potential, pH value, and viscosity were 111.9 ± 0.7 nm, 0.8 ± 0.1 mV, 6.02 ± 0.02, and 12.04 ± 2.64 cP, respectively. This formulation was stable over six months at ambient temperature. The CBD from CBD-β-CDPM-NS rapidly released to 100% within 1 min. Ex-vivo permeation studies of CBD-β-CDPM-NS through porcine nasal mucosa revealed a permeation rate of 4.8 μg/cm2/min, which indicated that CBD was effective in penetrating nasal epithelial cells. CBD-β-CDPM-NS was tested for its efficacy and safety in terms of cytokine production from nasal immune cells and toxicity to nasal epithelial cells. The CBD-β-CDPM-NS was not toxic to nasal epithelial at the concentration of CBD equivalent to 3.125-50 μg/mL. When the formulation was subjected to bioactivity testing against monocyte-like macrophage cells, it proved that the CBD-β-CDPM-NS has the potential to inhibit inflammatory cytokines. CBD-β-CDPM-NS demonstrated the formulation's ability to reduce the cytokine produced by S-RBD stimulation in ex vivo porcine nasal mucosa in both preventative and therapeutic modes.
Collapse
Affiliation(s)
- Narumon Changsan
- College of Pharmacy, Rangsit University, Pathumtani 12000, Thailand
| | - Somchai Sawatdee
- Drug and Cosmetics Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Nanotec-PSU Center of Excellence on Drug Delivery System Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai, Songkhla 90112, Thailand
| | - Charisopon Chunhachaichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
8
|
Triamchaisri N, Toochinda P, Lawtrakul L. Structural Investigation of Beta-Cyclodextrin Complexes with Cannabidiol and Delta-9-Tetrahydrocannabinol in 1:1 and 2:1 Host-Guest Stoichiometry: Molecular Docking and Density Functional Calculations. Int J Mol Sci 2023; 24:ijms24021525. [PMID: 36675035 PMCID: PMC9865391 DOI: 10.3390/ijms24021525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The complexation of β-cyclodextrin (β-CD) with cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) was investigated using molecular docking and M062X/6-31G(d,p) calculations. The calculations suggested two possible complex formations of 1:1 and 2:1 host-guest molecular ratio of β-CD with CBD and THC. The preferred orientation of all complexes in this study exhibited the hydrogen bonding between hydroxy-substituted benzene ring of CBD and THC with the β-CD's secondary hydroxy groups at the wide rim. The calculated complexation energies indicate that formation of the 2:1 complexes (-83.53 to -135.36 kcal/mol) was more energetically favorable and chemically stable than the 1:1 complexes (-30.00 to -34.92 kcal/mol). However, the deformation energies of the host and the guest components in the 2:1 complexes (37.47-96.91 kcal/mol) are much higher than those in the 1:1 complexes (3.49-8.69 kcal/mol), which means the formation processes of the 2:1 complexes are more difficult due to the rigidity of the dimeric β-CDs. Therefore, the inclusion complexes of β-CD with CBD and THC are more likely to be in 1:1 host-guest ratio than in 2:1 molecular ratio. The results of this study supported the experimental results that the complexation constant of 1:1 β-CD/CBD (Ks = 300 M-1) is greater than that of 2:1 β-CDs/CBD (Kss = 0.833 M-1). Altogether, this study introduced the fitting parameters that could indicate the stability of the molecular fits in complex formation of each stoichiometry host-guest ratio, which are important for the assessment of the inclusion mechanisms as well as the relationships of reactants and products in chemical reactions.
Collapse
|
9
|
Christoforides E, Andreou A, Papaioannou A, Bethanis K. Structural Studies of Piperine Inclusion Complexes in Native and Derivative β-Cyclodextrins. Biomolecules 2022; 12:biom12121762. [PMID: 36551190 PMCID: PMC9775453 DOI: 10.3390/biom12121762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Piperine (PN), the primary pungent alkaloid in black pepper shows several biological activities such as antioxidant, antimicrobial and anti-cancerogenic effects. Similar to other alkaloids, PN is characterized by poor water solubility. One way to improve its solubility and thus its biological activities is by forming inclusion complexes with suitable cyclodextrins. In this work PN inclusion complexes in native β-cyclodextrin (β-CD), its methylated (randomly methylated (RM-β-CD), heptakis-(2,6-di-O-methyl)-β-CD (DM-β-CD) and heptakis-(2,3,6-tri-O-methyl)-β-CD (TM-β-CD)) and 2-hydroxypropylated (HP-β-CD) derivatives are investigated using physicochemical methods, such as phase solubility study and X-ray crystallography complemented by theoretical (molecular dynamics simulations) studies. The determination of the crystal structure of the PN inclusion complexes in β-CD, DM-β-CD and TM-β-CD, reveals the formation of 1:2 guest:host inclusion complexes in the crystalline state. The guest PN molecule threads the hydrophobic cavities of the hosts which are arranged as couples in a tail-to-tail mode in the case of PN/β-CD and in a head-to-tail mode in the cases of PN/DM-β-CD and PN/TM-β-CD. MD studies based on the crystallographically determined structures and docked models show the stability of the examined complexes in an aqueous environment whereas the binding affinity of PN for the host molecules is calculated by the MM/GBSA method. Finally, phase-solubility studies of PN with β-CD, RM-β-CD and HP-β-CD are presented, indicating a Bs-type for the PN/β-CD complex and an AL-type for the PN/RM-β-CD and PN/HP-β-CD complexes with 1:1 guest:host stoichiometry.
Collapse
Affiliation(s)
- Elias Christoforides
- Physics Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, Campus 1, Ag. Spyridonos 28, 12243 Athens, Greece
| | - Athena Andreou
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Andreas Papaioannou
- Physics Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
10
|
Bayat F, Homami SS, Monzavi A, Olyai MRTB. Synthesis and Characterization of Ataluren-Cyclodextrins Complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Cannabidiol Antiproliferative Effect in Triple-Negative Breast Cancer MDA-MB-231 Cells Is Modulated by Its Physical State and by IGF-1. Int J Mol Sci 2022; 23:ijms23137145. [PMID: 35806150 PMCID: PMC9266539 DOI: 10.3390/ijms23137145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive phytocannabinoid that has been discussed for its safety and efficacy in cancer treatments. For this reason, we have inquired into its use on triple-negative human breast cancer. Analyzing the biological effects of CBD on MDA-MB-231, we have demonstrated that both CBD dosage and serum concentrations in the culture medium influence its outcomes; furthermore, light scattering studies demonstrated that serum impacts the CBD aggregation state by acting as a surfactant agent. Pharmacological studies on CBD in combination with chemotherapeutic agents reveal that CBD possesses a protective action against the cytotoxic effect exerted by cisplatin on MDA-MB-231 grown in standard conditions. Furthermore, in a low serum condition (0.5%), starting from a threshold concentration (5 µM), CBD forms aggregates, exerts cytostatic antiproliferative outcomes, and promotes cell cycle arrest activating autophagy. At doses above the threshold, CBD exerts a highly cytotoxic effect inducing bubbling cell death. Finally, IGF-1 and EGF antagonize the antiproliferative effect of CBD protecting cells from harmful consequences of CBD aggregates. In conclusion, CBD effect is strongly associated with the physical state and concentration that reaches the treated cells, parameters not taken into account in most of the research papers.
Collapse
|