1
|
Zambre D, Hussain U, Sheikh S, Jaiswal S, Belgamwar V. Stability-indicating HPLC analysis of Azilsartan Medoxomil potassium: A QbD-based method development and validation. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1259:124599. [PMID: 40311482 DOI: 10.1016/j.jchromb.2025.124599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/03/2025]
Abstract
Developing robust analytical methods for Azilsartan Medoxomil Potassium (AZM), a potent angiotensin II receptor antagonist, is essential due to its instability and limited aqueous solubility. This study aimed to establish and optimize a high-performance liquid chromatography (HPLC) method for the accurate and stability-indicating quantification of AZM and its impurities in the active pharmaceutical ingredient (API) and formulated drug products. Using an Analytical Quality by Design (A-QbD) framework, method parameters were optimized through a Central Composite Design (CCD), focusing on variables such as acetonitrile concentration, buffer pH, and flow rate to achieve desirable tailing factors and retention times. The validated method demonstrated high accuracy, precision, and sensitivity, with a linear response range of 10-50 μg/mL and limits of detection and quantification as low as 0.00607 and 0.01841 ng/mL, respectively. Forced degradation studies confirmed the method's selectivity and stability-indicating capabilities by identifying distinct degradation products under various stress conditions, including acidic, basic, oxidative, and photolytic environments. The validated HPLC method was successfully applied to a commercial AZM formulation, yielding assay values within acceptable limits for quality control. This study provides a reliable and robust analytical method that ensures the quality and stability of AZM throughout its lifecycle.
Collapse
Affiliation(s)
- Divya Zambre
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Ujban Hussain
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Sameer Sheikh
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Shweta Jaiswal
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Veena Belgamwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India.
| |
Collapse
|
2
|
Railic M, Crean AM, Vucen S. Unravelling Microarray Patch Performance: The Role of In Vitro Release Medium and Biorelevant Testing. Mol Pharm 2024; 21:5028-5040. [PMID: 39195905 PMCID: PMC11462508 DOI: 10.1021/acs.molpharmaceut.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The absence of established protocols for studying the in vitro performance of dissolvable microarray patches (MAPs) poses a significant challenge within the field. To overcome this challenge, it is essential to optimize testing methods in a way that closely mimics the skin's environment, ensuring biorelevance and enhancing the precision of assessing MAP performance. This study focuses on optimizing in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for MAPs containing the antihistamine drugs loratadine (LOR) and chlorpheniramine maleate (CPM). Our primary objective is to investigate the impact of the composition of in vitro release media on the drug release rate, penetration through the skin, and permeation into the release medium. Artificial interstitial fluid is introduced as a biorelevant release medium and compared with commonly used media in IVRT and IVPT studies. Prior to these studies, we evaluated drug solubility in different release media and developed a method for LOR and CPM extraction from the skin using a design of experiment approach. Our findings highlight the effect of the in vitro release medium composition on both LOR and CPM release rate and their penetration through the skin. Furthermore, we identified the importance of considering the interplay between the physicochemical attributes of the drug molecules, the design of the MAP formulation, and the structural properties of the skin when designing IVRT and IVPT protocols.
Collapse
Affiliation(s)
- Maja Railic
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Abina M. Crean
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| |
Collapse
|
3
|
Patil SD, Chalikwar SS. A brief review on application of design of experiment for the analysis of pharmaceuticals using HPLC. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:203-228. [PMID: 38159721 DOI: 10.1016/j.pharma.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The quality pioneer Dr. Joseph M. Juran first proposed the idea of quality by design. According to him, pharmaceutical quality by design is an organised approach to product development that starts with predetermined goals and places an emphasis on product, process understanding, control based on reliable science and quality risk management. The quality of a product or process can typically be affected by a number of input elements. Design of experiments has been employed widely recently to understand the impacts of multidimensional and interactions of input parameters on the output responses of analytical procedures and pharmaceutical goods. Depending on the design of experiments objectives, screening, characterization, or optimization of the process and formulation, a variety of designs, such as factorial or mixture, can be used. The most popular designs used in the stage of screening or factor selection are the 2-Level Factorial and Plackett-Burman designs, both of which have two levels for each factor (k), both economical and effective, and in optimization widely used designs in this step are full factorial at three levels, central composite, Box-Behnken design. The analysis of variance, regression significance, and lack of fit of the regression model were some of the key topics covered in the discussion of the main components of multiple regression model adjustment. Design of experiments is thus the primary element of the formulation and analytical quality by design. The details about design of experiments used for the analysis of pharmaceutical formulation using HPLC.
Collapse
Affiliation(s)
- Sachin D Patil
- Department of Pharmaceutics and Quality Assurance, R.C. Patel Institute of Pharmacy, Shirpur 425405, Maharashtra State, India
| | - Shailesh S Chalikwar
- Department of Industrial Pharmacy and Quality Assurance, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra State, India.
| |
Collapse
|
4
|
Falusi F, Berkó S, Budai-Szűcs M, Veréb Z, Kovács A. Foams Set a New Pace for the Release of Diclofenac Sodium. Pharmaceutics 2024; 16:287. [PMID: 38399341 PMCID: PMC10892945 DOI: 10.3390/pharmaceutics16020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Medicated foams have emerged as promising alternatives to traditional carrier systems in pharmaceutical research. Their rapid and convenient application allows for effective treatment of extensive or hirsute areas, as well as sensitive or inflamed skin surfaces. Foams possess excellent spreading capabilities on the skin, ensuring immediate drug absorption without the need for intense rubbing. Our research focuses on the comparison of physicochemical and biopharmaceutical properties of three drug delivery systems: foam, the foam bulk liquid, and a conventional hydrogel. During the development of the composition, widely used diclofenac sodium was employed. The safety of the formulae was confirmed through an in vitro cytotoxicity assay. Subsequently, the closed Franz diffusion cell was used to determine drug release and permeation in vitro. Ex vivo Raman spectroscopy was employed to investigate the presence of diclofenac sodium in various skin layers. The obtained results of the foam were compared to the bulk liquid and to a conventional hydrogel. In terms of drug release, the foam showed a rapid release, with 80% of diclofenac released within 30 min. In summary, the investigated foam holds promising potential as an alternative to traditional dermal carrier systems, offering faster drug release and permeation.
Collapse
Affiliation(s)
- Fanni Falusi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6 Eötvös St., 6720 Szeged, Hungary; (F.F.); (S.B.); (M.B.-S.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6 Eötvös St., 6720 Szeged, Hungary; (F.F.); (S.B.); (M.B.-S.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6 Eötvös St., 6720 Szeged, Hungary; (F.F.); (S.B.); (M.B.-S.)
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary;
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine-USz Skin Research Group, University of Szeged, 6720 Szeged, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6 Eötvös St., 6720 Szeged, Hungary; (F.F.); (S.B.); (M.B.-S.)
| |
Collapse
|
5
|
Simões A, Veiga F, Vitorino C. Question-based review for pharmaceutical development: An enhanced quality approach. Eur J Pharm Biopharm 2024; 195:114174. [PMID: 38160986 DOI: 10.1016/j.ejpb.2023.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Over the last years, the pharmaceutical industry has faced real challenges regarding quality assurance. In this context, the establishment of more holistic approaches to the pharmaceutical development has been encouraged. The emergence of the Quality by Design (QbD) paradigm as systematic, scientific and risk-based methodology introduced a new concept of pharmaceutical quality. In essence, QbD can be interpreted as a strategy to maximize time and cost savings. An in-depth understanding of the formulation and manufacturing process is demanded to optimize the safety, efficacy and quality of a drug product at all stages of development. This innovative approach streamlines the pharmaceutical Research and Development (R&D) process, provides greater manufacturing flexibility and reduces regulatory burden. To assist in QbD implementation, International Conference on Harmonisation (ICH), U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) organized and launched QbD principles in their guidance for industry, identifying key concepts and tools to design and develop a high-quality drug product. Despite the undeniable advantages of the QbD approach, and the widespread information on QbD regulatory expectations, its full implementation in the pharmaceutical field is still limited. The present review aims to establish a crosswise overview on the current application status of QbD within the framework of the ICH guidelines (ICH Q8(R2) - Q14 and ICH Q2(R2)). Moreover, it outlines the way information gathered from the QbD methodology is being harmonized in Marketing Authorization Applications (MAAs) for European market approval. This work also highlights the challenges that hinder the deployment of the QbD strategy as a standard practice.
Collapse
Affiliation(s)
- Ana Simões
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra 3004-535 Coimbra, Portugal.
| |
Collapse
|
6
|
Kovács A, Falusi F, Gácsi A, Budai-Szűcs M, Csányi E, Veréb Z, Monostori T, Csóka I, Berkó S. Formulation and investigation of hydrogels containing an increased level of diclofenac sodium using risk assessment tools. Eur J Pharm Sci 2024; 193:106666. [PMID: 38081373 DOI: 10.1016/j.ejps.2023.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024]
Abstract
Transdermal delivery of active ingredients is a challenge for pharmaceutical technology due to their inadequate penetration properties and the barrier function of the skin. The necessity of painless, effective, topical therapy for the aging population is growing, and a variety of diclofenac sodium-containing semi-solid preparations are available to alleviate the symptoms of these ailments. Our purpose was to formulate a novel composition with higher drug content to enhance drug release and permeation, thereby providing more effective therapy. Another goal was to maintain the concentration of the organic solvent mixture below 30%, to protect the skin barrier. Firstly, literature and market research were conducted, based on which the appropriate excipients for the target formulation were selected. Solubility tests were conducted with binary and ternary mixtures. As a result, the optimal ternary mixture was chosen. Hydrogels containing 1, 5, and 7% of diclofenac sodium were prepared and the stability of the formulations were studied by microscopic measurements and cytotoxicity test were carried out of the components also. The release and permeation of diclofenac sodium were investigated in different concentrations. It can be concluded that we have succeeded in preparing a topically applicable stable diclofenac sodium hydrogel with higher concentration, drug release, and improved skin permeation than the formulations available on the market.
Collapse
Affiliation(s)
- Anita Kovács
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös St., Szeged H-6720, Hungary
| | - Fanni Falusi
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös St., Szeged H-6720, Hungary
| | - Attila Gácsi
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös St., Szeged H-6720, Hungary
| | - Mária Budai-Szűcs
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös St., Szeged H-6720, Hungary
| | - Erzsébet Csányi
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös St., Szeged H-6720, Hungary
| | - Zoltán Veréb
- Department of Dermatology and Allergology, Regenerative Medicine and Cellular Pharmacology Laboratory, University of Szeged, Szeged 6720, Hungary; Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged 6720, Hungary; Hungarian Centre of Excellence for Molecular Medicine-USz Skin Research Group, University of Szeged, Szeged 6720, Hungary
| | - Tamás Monostori
- Department of Dermatology and Allergology, Regenerative Medicine and Cellular Pharmacology Laboratory, University of Szeged, Szeged 6720, Hungary; Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged 6720, Hungary
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös St., Szeged H-6720, Hungary
| | - Szilvia Berkó
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös St., Szeged H-6720, Hungary.
| |
Collapse
|
7
|
Walther R, Krmar J, Leistner A, Svrkota B, Otašević B, Malenović A, Holzgrabe U, Protić A. Analytical Quality by Design: Achieving Robustness of an LC-CAD Method for the Analysis of Non-Volatile Fatty Acids. Pharmaceuticals (Basel) 2023; 16:ph16040478. [PMID: 37111235 PMCID: PMC10145151 DOI: 10.3390/ph16040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
An alternative to the time-consuming and error-prone pharmacopoeial gas chromatography method for the analysis of fatty acids (FAs) is urgently needed. The objective was therefore to propose a robust liquid chromatography method with charged aerosol detection for the analysis of polysorbate 80 (PS80) and magnesium stearate. FAs with different numbers of carbon atoms in the chain necessitated the use of a gradient method with a Hypersil Gold C18 column and acetonitrile as organic modifier. The risk-based Analytical Quality by Design approach was applied to define the Method Operable Design Region (MODR). Formic acid concentration, initial and final percentages of acetonitrile, gradient elution time, column temperature, and mobile phase flow rate were identified as critical method parameters (CMPs). The initial and final percentages of acetonitrile were fixed while the remaining CMPs were fine-tuned using response surface methodology. Critical method attributes included the baseline separation of adjacent peaks (α-linolenic and myristic acid, and oleic and petroselinic acid) and the retention factor of the last compound eluted, stearic acid. The MODR was calculated by Monte Carlo simulations with a probability equal or greater than 90%. Finally, the column temperature was set at 33 °C, the flow rate was 0.575 mL/min, and acetonitrile linearly increased from 70 to 80% (v/v) within 14.2 min.
Collapse
Affiliation(s)
- Rasmus Walther
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jovana Krmar
- Department of Drug Analysis, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11 221 Belgrade, Serbia
| | - Adrian Leistner
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bojana Svrkota
- Department of Drug Analysis, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11 221 Belgrade, Serbia
| | - Biljana Otašević
- Department of Drug Analysis, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11 221 Belgrade, Serbia
| | - Andjelija Malenović
- Department of Drug Analysis, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11 221 Belgrade, Serbia
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ana Protić
- Department of Drug Analysis, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11 221 Belgrade, Serbia
| |
Collapse
|