1
|
Yi G, Li M, Zhou J, Li J, Song X, Li S, Liu J, Zhang H, Chen Z. Novel pH-responsive lipid nanoparticles deliver UA-mediated mitophagy and ferroptosis for osteoarthritis treatment. Mater Today Bio 2025; 32:101697. [PMID: 40225130 PMCID: PMC11986606 DOI: 10.1016/j.mtbio.2025.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Synovial inflammation plays a crucial role in osteoarthritis (OA) development, leading to chronic inflammation and cartilage destruction. Although targeting synovitis can alleviate OA, clinical outcomes have been disappointing due to poor drug targeting and joint cavity heterogeneity. This study presents pH-responsive lipid nanoparticles (LNPs@UA), loaded with Urolithin A (UA), as a potential OA treatment. LNPs@UA showed uniform particle size, low zeta potential, and effective mitochondria-targeting and pH-responsive capabilities. In vitro, LNPs@UA reduced reactive oxygen species (ROS), pro-inflammatory factors (IL-1β, IL-6, TNF-α), and promoted M2 macrophage polarization. It improved mitochondrial structure, enhanced autophagy, and inhibited ferroptosis. In vivo, LNPs@UA alleviated OA progression in an ACLT-induced OA mouse model. Transcriptomic analysis revealed inhibition of NF-κB signaling and activation of repair pathways. These results suggest LNPs@UA could offer a promising therapeutic approach for OA.
Collapse
Affiliation(s)
- Guoliang Yi
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Guizhou Medical University, Guiyang, 550004, China
| | - Min Li
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiayi Zhou
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jinxin Li
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xizheng Song
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Siming Li
- Guizhou Medical University, Guiyang, 550004, China
- Department of Orthopedics, Guangzhou Red Cross Hospital, Guangzhou, 510220, China
| | - Jianghua Liu
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haowei Zhang
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
2
|
Hussain MS, Prajapati BG, Gandhi SM, Sharma M, Kapoor DU, Elossaily GM, Garg S. Overcoming Obstacles: The Role of Lipid Nanocarriers in Therapeutic Approaches for Pancreatic Cancer. BIONANOSCIENCE 2025; 15:262. [DOI: 10.1007/s12668-025-01873-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 05/04/2025]
|
3
|
Abusara OH, Agha ASAA, Bardaweel SK. Advancements and innovations in liquid biopsy through microfluidic technology for cancer diagnosis. Analyst 2025; 150:1711-1725. [PMID: 40181713 DOI: 10.1039/d5an00105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Cancer is one of the leading causes of death worldwide, with approximately 10 million deaths and almost 20 million cases diagnosed in 2022. Various diagnostic methods for cancer, including physical examination, lab tests, imaging, and biopsy (tissue or liquid), are available in clinical settings. Liquid biopsy earned considerable attention due to its minimal invasiveness, patient convenience, and rapidness. Liquid biopsy is experiencing a significant transformation owing to the incorporation of microfluidic technologies. Microfluidic technologies allow for real-time observations and precise, sensitive, and efficient results in early cancer diagnosis through the identification of various biomarkers using body fluids at the microscale. This review highlights the transition from conventional cancer diagnostic methods to critically analyzing innovations and the integration of modern microfluidic technologies, presenting their influence in improving cancer diagnosis. This review highlights the significance of identifying exosomes and their biological components, such as micro RNAs, circular RNA, and mRNA, via microfluidics as biomarkers for cancer diagnosis. It also highlights the integration of microfluidics with advanced technologies, such as CRISPR gene editing, organ-on-a-chip models, 3D bioprinting, and nanotechnology, for cancer diagnosis. Moreover, integrating artificial intelligence into microfluidic systems has significantly transformed research related to cancer diagnosis. This advancement enables more precise diagnosis and personalized treatment strategies using the large available data on networks along with algorithmic approaches. Collectively, microfluidics and their integration into advanced technologies have shown the potential for progress in early cancer diagnosis and the customization of treatment approaches, such as immunotherapy, in the future.
Collapse
Affiliation(s)
- Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan.
| | - Ahmed S A Ali Agha
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Torres J, Valenzuela Oses JK, Rabasco-Álvarez AM, González-Rodríguez ML, García MC. Innovations in Cancer Therapy: Endogenous Stimuli-Responsive Liposomes as Advanced Nanocarriers. Pharmaceutics 2025; 17:245. [PMID: 40006612 PMCID: PMC11858840 DOI: 10.3390/pharmaceutics17020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Recent advancements in nanotechnology have revolutionized cancer therapy-one of the most pressing global health challenges and a leading cause of death-through the development of liposomes (L), lipid-based nanovesicles known for their biocompatibility and ability to encapsulate both hydrophilic and lipophilic drugs. More recent innovations have led to the creation of stimuli-responsive L that release their payloads in response to specific endogenous or exogenous triggers. Dual- and multi-responsive L, which react to multiple stimuli, offer even greater precision, improving therapeutic outcomes while reducing systemic toxicity. Additionally, these smart L can adjust their physicochemical properties and morphology to enable site-specific targeting and controlled drug release, enhancing treatment efficacy while minimizing adverse effects. This review explores the latest advancements in endogenous stimuli-responsive liposomal nanocarriers, as well as dual- and multi-responsive L that integrate internal and external triggers, with a focus on their design strategies, mechanisms, and applications in cancer therapy.
Collapse
Affiliation(s)
- Jazmín Torres
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, Science Building 2, Córdoba X5000HUA, Argentina; (J.T.); (J.K.V.O.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Córdoba X5000HUA, Argentina
| | - Johanna Karina Valenzuela Oses
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, Science Building 2, Córdoba X5000HUA, Argentina; (J.T.); (J.K.V.O.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Córdoba X5000HUA, Argentina
| | - Antonio María Rabasco-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain;
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain;
| | - Mónica Cristina García
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, Science Building 2, Córdoba X5000HUA, Argentina; (J.T.); (J.K.V.O.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Córdoba X5000HUA, Argentina
| |
Collapse
|
5
|
Lipreri MV, Totaro MT, Boos JA, Basile MS, Baldini N, Avnet S. A Novel Microfluidic Platform for Personalized Anticancer Drug Screening Through Image Analysis. MICROMACHINES 2024; 15:1521. [PMID: 39770275 PMCID: PMC11677617 DOI: 10.3390/mi15121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The advancement of personalized treatments in oncology has garnered increasing attention, particularly for rare and aggressive cancer with low survival rates like the bone tumors osteosarcoma and chondrosarcoma. This study introduces a novel PDMS-agarose microfluidic device tailored for generating patient-derived tumor spheroids and serving as a reliable tool for personalized drug screening. Using this platform in tandem with a custom imaging index, we evaluated the impact of the anticancer agent doxorubicin on spheroids from both tumor types. The device produces 20 spheroids, each around 300 µm in diameter, within a 24 h timeframe, facilitating assessments of characteristics and reproducibility. Following spheroid generation, we measured patient-derived spheroid diameters in bright-field images, calcein AM-positive areas/volume, and the binary fraction area, a metric analyzing fluorescence intensity. By employing a specially developed equation that combines viability signal extension and intensity, we observed a substantial decrease in spheroid viability of around 75% for both sarcomas at the highest dosage (10 µM). Osteosarcoma spheroids exhibited greater sensitivity to doxorubicin than chondrosarcoma spheroids within 48 h. This approach provides a reliable in vitro model for aggressive sarcomas, representing a personalized approach for drug screening that could lead to more effective cancer treatments tailored to individual patients, despite some implementation challenges.
Collapse
Affiliation(s)
- Maria Veronica Lipreri
- Biomedical Science, Technologies, and Nanobiotecnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.V.L.)
| | - Marilina Tamara Totaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Julia Alicia Boos
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, 4056 Basel, Switzerland;
| | - Maria Sofia Basile
- Biomedical Science, Technologies, and Nanobiotecnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.V.L.)
| | - Nicola Baldini
- Biomedical Science, Technologies, and Nanobiotecnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.V.L.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
6
|
Chintamaneni PK, Pindiprolu SKSS, Swain SS, Karri VVSR, Nesamony J, Chelliah S, Bhaskaran M. Conquering chemoresistance in pancreatic cancer: Exploring novel drug therapies and delivery approaches amidst desmoplasia and hypoxia. Cancer Lett 2024; 588:216782. [PMID: 38453046 DOI: 10.1016/j.canlet.2024.216782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer poses a significant challenge within the field of oncology due to its aggressive behaviour, limited treatment choices, and unfavourable outlook. With a mere 10% survival rate at the 5-year mark, finding effective interventions becomes even more pressing. The intricate relationship between desmoplasia and hypoxia in the tumor microenvironment further complicates matters by promoting resistance to chemotherapy and impeding treatment efficacy. The dense extracellular matrix and cancer-associated fibroblasts characteristic of desmoplasia create a physical and biochemical barrier that impedes drug penetration and fosters an immunosuppressive milieu. Concurrently, hypoxia nurtures aggressive tumor behaviour and resistance to conventional therapies. a comprehensive exploration of emerging medications and innovative drug delivery approaches. Notably, advancements in nanoparticle-based delivery systems, local drug delivery implants, and oxygen-carrying strategies are highlighted for their potential to enhance drug accessibility and therapeutic outcomes. The integration of these strategies with traditional chemotherapies and targeted agents reveals the potential for synergistic effects that amplify treatment responses. These emerging interventions can mitigate desmoplasia and hypoxia-induced barriers, leading to improved drug delivery, treatment efficacy, and patient outcomes in pancreatic cancer. This review article delves into the dynamic landscape of emerging anticancer medications and innovative drug delivery strategies poised to overcome the challenges imposed by desmoplasia and hypoxia in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | | | - Swati Swagatika Swain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Jerry Nesamony
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Selvam Chelliah
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
7
|
Naghib SM, Mohammad-Jafari K. Microfluidics-mediated Liposomal Nanoparticles for Cancer Therapy: Recent Developments on Advanced Devices and Technologies. Curr Top Med Chem 2024; 24:1185-1211. [PMID: 38424436 DOI: 10.2174/0115680266286460240220073334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Liposomes, spherical particles with phospholipid double layers, have been extensively studied over the years as a means of drug administration. Conventional manufacturing techniques like thin-film hydration and extrusion have limitations in controlling liposome size and distribution. Microfluidics enables superior tuning of parameters during the self-assembly of liposomes, producing uniform populations. This review summarizes microfluidic methods for engineering liposomes, including hydrodynamic flow focusing, jetting, micro mixing, and double emulsions. The precise control over size and lamellarity afforded by microfluidics has advantages for cancer therapy. Liposomes created through microfluidics and designed to encapsulate chemotherapy drugs have exhibited several advantageous properties in cancer treatment. They showcase enhanced permeability and retention effects, allowing them to accumulate specifically in tumor tissues passively. This passive targeting of tumors results in improved drug delivery and efficacy while reducing systemic toxicity. Promising results have been observed in pancreatic, lung, breast, and ovarian cancer models, making them a potential breakthrough in cancer therapy. Surface-modified liposomes, like antibodies or carbohydrates, also achieve active targeting. Overall, microfluidic fabrication improves reproducibility and scalability compared to traditional methods while maintaining drug loading and biological efficacy. Microfluidics-engineered liposomal formulations hold significant potential to overcome challenges in nanomedicine-based cancer treatment.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Kave Mohammad-Jafari
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
8
|
Chen S, Hu S, Zhou B, Cheng B, Tong H, Su D, Li X, Chen Y, Zhang G. Telomere-related prognostic biomarkers for survival assessments in pancreatic cancer. Sci Rep 2023; 13:10586. [PMID: 37391503 PMCID: PMC10313686 DOI: 10.1038/s41598-023-37836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023] Open
Abstract
Human telomeres are linked to genetic instability and a higher risk of developing cancer. Therefore, to improve the dismal prognosis of pancreatic cancer patients, a thorough investigation of the association between telomere-related genes and pancreatic cancer is required. Combat from the R package "SVA" was performed to correct the batch effects between the TCGA-PAAD and GTEx datasets. After differentially expressed genes (DEGs) were assessed, we constructed a prognostic risk model through univariate Cox regression, LASSO-Cox regression, and multivariate Cox regression analysis. Data from the ICGC, GSE62452, GSE71729, and GSE78229 cohorts were used as test cohorts for validating the prognostic signature. The major impact of the signature on the tumor microenvironment and its response to immune checkpoint drugs was also evaluated. Finally, PAAD tissue microarrays were fabricated and immunohistochemistry was performed to explore the expression of this signature in clinical samples. After calculating 502 telomere-associated DEGs, we constructed a three-gene prognostic signature (DSG2, LDHA, and RACGAP1) that can be effectively applied to the prognostic classification of pancreatic cancer patients in multiple datasets, including TCGA, ICGC, GSE62452, GSE71729, and GSE78229 cohorts. In addition, we have screened a variety of tumor-sensitive drugs targeting this signature. Finally, we also found that protein levels of DSG2, LDHA, and RACGAP1 were upregulated in pancreatic cancer tissues compared to normal tissues by immunohistochemistry analysis. We established and validated a telomere gene-related prognostic signature for pancreatic cancer and confirmed the upregulation of DSG2, LDHA, and RACGAP1 expression in clinical samples, which may provide new ideas for individualized immunotherapy.
Collapse
Affiliation(s)
- Shengyang Chen
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China.
| | - Shuiquan Hu
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Baizhong Zhou
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Bingbing Cheng
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Hao Tong
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Dongchao Su
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Xiaoyong Li
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Yanjun Chen
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University Fifth Affiliated Hospital, Kangfu Front Street 3#, Zhengzhou, 450052, China
| | - Genhao Zhang
- Department of Blood Transfusion, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Abou Khouzam R, Lehn JM, Mayr H, Clavien PA, Wallace MB, Ducreux M, Limani P, Chouaib S. Hypoxia, a Targetable Culprit to Counter Pancreatic Cancer Resistance to Therapy. Cancers (Basel) 2023; 15:cancers15041235. [PMID: 36831579 PMCID: PMC9953896 DOI: 10.3390/cancers15041235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and it is a disease of dismal prognosis. While immunotherapy has revolutionized the treatment of various solid tumors, it has achieved little success in PDAC. Hypoxia within the stroma-rich tumor microenvironment is associated with resistance to therapies and promotes angiogenesis, giving rise to a chaotic and leaky vasculature that is inefficient at shuttling oxygen and nutrients. Hypoxia and its downstream effectors have been implicated in immune resistance and could be contributing to the lack of response to immunotherapy experienced by patients with PDAC. Paradoxically, increasing evidence has shown hypoxia to augment genomic instability and mutagenesis in cancer, suggesting that hypoxic tumor cells could have increased production of neoantigens that can potentially enable their clearance by cytotoxic immune cells. Strategies aimed at relieving this condition have been on the rise, and one such approach opts for normalizing the tumor vasculature to reverse hypoxia and its downstream support of tumor pathogenesis. An important consideration for the successful implementation of such strategies in the clinic is that not all PDACs are equally hypoxic, therefore hypoxia-detection approaches should be integrated to enable optimal patient selection for achieving improved patient outcomes.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Bradley Wallace
- Gastroenterology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Michel Ducreux
- Department of Cancer Medicine, Gustave Roussy Cancer Institute, F-94805 Villejuif, France
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| |
Collapse
|
10
|
Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14102195. [PMID: 36297630 PMCID: PMC9608678 DOI: 10.3390/pharmaceutics14102195] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Liposomes are well-known nanoparticles with a non-toxic nature and the ability to incorporate both hydrophilic and hydrophobic drugs simultaneously. As modern drug delivery formulations are produced by emerging technologies, numerous advantages of liposomal drug delivery systems over conventional liposomes or free drug treatment of cancer have been reported. Recently, liposome nanocarriers have exhibited high drug loading capacity, drug protection, improved bioavailability, enhanced intercellular delivery, and better therapeutic effect because of resounding success in targeting delivery. The site targeting of smart responsive liposomes, achieved through changes in their physicochemical and morphological properties, allows for the controlled release of active compounds under certain endogenous or exogenous stimuli. In that way, the multifunctional and stimuli-responsive nanocarriers for the drug delivery of cancer therapeutics enhance the efficacy of treatment prevention and fighting over metastases, while limiting the systemic side effects on healthy tissues and organs. Since liposomes constitute promising nanocarriers for site-targeted and controlled anticancer drug release, this review focuses on the recent progress of smart liposome achievements for anticancer drug delivery applications.
Collapse
|
11
|
Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022; 27:molecules27175436. [PMID: 36080203 PMCID: PMC9457551 DOI: 10.3390/molecules27175436] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
In past decades, anticancer research has led to remarkable results despite many of the approved drugs still being characterized by high systemic toxicity mainly due to the lack of tumor selectivity and present pharmacokinetic drawbacks, including low water solubility, that negatively affect the drug circulation time and bioavailability. The stability studies, performed in mild conditions during their development or under stressing exposure to high temperature, hydrolytic medium or light source, have demonstrated the sensitivity of anticancer drugs to many parameters. For this reason, the formation of degradation products is assessed both in pharmaceutical formulations and in the environment as hospital waste. To date, numerous formulations have been developed for achieving tissue-specific drug targeting and reducing toxic side effects, as well as for improving drug stability. The development of prodrugs represents a promising strategy in targeted cancer therapy for improving the selectivity, efficacy and stability of active compounds. Recent studies show that the incorporation of anticancer drugs into vesicular systems, such as polymeric micelles or cyclodextrins, or the use of nanocarriers containing chemotherapeutics that conjugate to monoclonal antibodies can improve solubility, pharmacokinetics, cellular absorption and stability. In this study, we summarize the latest advances in knowledge regarding the development of effective highly stable anticancer drugs formulated as stable prodrugs or entrapped in nanosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fedora Grande
- Correspondence: (G.I.); (F.G.); Tel.: +39-0984-493268 (G.I.)
| |
Collapse
|