1
|
Terenteva O, Mostovaya O, Bukharov M, Mukhametzyanov T, Bikmukhametov A, Lyubina A, Voloshina A, Petrov K, Padnya P, Stoikov I. Peptidomimetics based on thiacalixarene with L-tyrosine moieties: Antibacterial activity against methicillin-resistant Staphylococcus aureus and degradation induced by binding to α-chymotrypsin. Bioorg Chem 2025; 160:108434. [PMID: 40187027 DOI: 10.1016/j.bioorg.2025.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The design of new antimicrobial agents is an important challenge due to the growing resistance of microorganisms to existing antibiotics. In recent years, the trend towards the development of compounds and materials with (bio)degradable properties has emerged. In this work, we propose and develop a method for the synthesis of new peptidomimetics, i.e., water-soluble macrocyclic quaternary ammonium salts containing L-tyrosine fragments based on p-tert-butylthiacalix[4]arene in various stereoisomeric forms (cone, partial cone, and 1,3-alternate). These compounds have low cytotoxicity (IC50 = 80-267 μM) and high antibacterial activity (MIC = 0.5-15.6 μM) against Gram-positive bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA). The obtained peptidomimetics can bind α-chymotrypsin with the formation of supramolecular systems and their subsequent degradation. Our results demonstrate the first example of multi-action thiacalixarene derivatives with antibacterial activity, protein binding ability and degradation induced by binding to α-chymotrypsin. The obtained results open the possibility of creating multi-action peptidomimetic systems with antimicrobial and biodegradable effect.
Collapse
Affiliation(s)
- Olga Terenteva
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation
| | - Olga Mostovaya
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation
| | - Mikhail Bukharov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation
| | - Timur Mukhametzyanov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation
| | - Azamat Bikmukhametov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Pavel Padnya
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation.
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation.
| |
Collapse
|
2
|
Filippenkov IB, Glazova NY, Sebentsova EA, Stavchansky VV, Andreeva LA, Myasoedov NF, Levitskaya NG, Limborska SA, Dergunova LV. Changes of Transcriptomic Activity in Rat Brain Cells under the Influence of Synthetic Adrenocorticotropic Hormone-Like Peptides. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1643-1656. [PMID: 39418522 DOI: 10.1134/s0006297924090104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Synthetic peptides have a wide range of clinical effects. Of particular interest are peptides based on adrenocorticotropic hormone (ACTH) both as already used and as potential drugs for preventing consequences of cerebral ischemia. However, it is necessary to study influence of the peptide on the brain cells under normal physiological conditions, including understanding the risks of their use. Here, we used high-throughput RNA sequencing (RNA-Seq) to identify differentially expressed genes (DEGs) in the brain frontal cortex of rat receiving intraperitoneal administration of ACTH-like peptides ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP, or saline. We identified 258 and 228 DEGs, respectively, with the fold change > 1.5 and Padj < 0.05 at 22.5 h after the first administration of Semax and ACTH(6-9)PGP. Metabolic pathways, characterizing both common and specific effects of the peptides on the transcriptome were identified. Both peptides predominantly caused decrease in expression of the genes associated with the immune system. At the same time, when comparing the effects of ACTH(6-9)PGP relative to Semax, DEGs were identified that characterized the main differences in the effects of the peptides. These genes were mostly downregulated and associated with neurosignaling systems and regulation of ion channels, thus characterizing differences in the effects of the peptides. Our data show how differences in the structure of ACTH derivatives are associated with the changes in the brain cell transcriptome following exposure to these related peptides. Furthermore, our results demonstrate that when studying influence of regulatory peptides on transcriptome under pathological conditions, it is necessary to take into account their actions under normal physiological conditions.
Collapse
Affiliation(s)
| | - Nataliya Y Glazova
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena A Sebentsova
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | | | | - Nataliya G Levitskaya
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | |
Collapse
|
3
|
De-Pieri E, Zaccaron RP, Mezzari CG, Cardoso MDM, De Roch Casagrande L, Silveira PCL, Machado-de-Ávila RA. DAP1-2: a synthetic peptide targeting IL-1R1 receptor effectively suppresses IL-1β in vitro. Immunol Res 2024; 72:788-796. [PMID: 38698191 DOI: 10.1007/s12026-024-09485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
The pathological manifestation of the inflammatory process primarily stems from the heightened release of pro-inflammatory cytokines, with IL-1β standing out as a pivotal cytokine. The excessive presence of IL-1β disrupts immune signaling, thereby assuming a pathogenic and exacerbating role in the pathophysiology of numerous inflammatory diseases. Regulating IL-1β levels becomes crucial, and the IL-1Ra molecule serves this purpose by binding to the IL-1R1 receptor, thereby impeding the binding of IL-1β. Several pharmaceuticals have entered the market, aiming to neutralize IL-1β's biological function through diverse mechanisms. However, the existing IL-1β inhibitors are recombinant proteins, characterized by a high production cost and limited stability. Therefore, this study aimed to predict a peptide, named DAP1-2, based on the IL-1Ra molecule. DAP1-2 was designed to attenuate responses triggered by IL-1β by blocking the IL-1R1 receptor. The selection of amino acids from the IL-1Ra molecule (PDB: I1RA) that interact with the three domains of the IL-1R1 receptor was performed using Swiss PDB Viewer. After prediction, chemical synthesis was made using the Fmoc-Synthesis technique. The efficacy of DAP1-2 was assessed using RAW 264.7 cells, which were exposed to LPS (5 μg/mL) for 24 h to induce IL-1β expression and treated with the peptides in different concentrations. IL-1β levels were assessed using ELISA, and the gene expression of IL-1β was measured by RT-qPCR, additionally to the viability test. Results revealed a significant reduction in IL-1β levels and gene expression in cells stimulated by LPS and treated with DAP1-2 in different concentrations. Furthermore, the MTT assay confirmed the nontoxic nature of the peptides on the cell lineage. This alternative approach shows promise as an IL-1 inhibitor, due to the stability, ease of production, and cost-effectiveness provided by the use of synthetic peptides.
Collapse
Affiliation(s)
- Ellen De-Pieri
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil
| | - Camille Generoso Mezzari
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil
| | - Mariana de Melo Cardoso
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Laura De Roch Casagrande
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil.
| | - Ricardo Andrez Machado-de-Ávila
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil
| |
Collapse
|
4
|
Deigin V, Linkova N, Vinogradova J, Vinogradov D, Polyakova V, Medvedev D, Krasichkov A, Volpina O. The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples. Int J Mol Sci 2024; 25:5042. [PMID: 38732260 PMCID: PMC11084461 DOI: 10.3390/ijms25095042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Peptides show high promise in the targeting and intracellular delivery of next-generation biotherapeutics. The main limitation is peptides' susceptibility to proteolysis in biological systems. Numerous strategies have been developed to overcome this challenge by chemically enhancing the resistance to proteolysis. In nature, amino acids, except glycine, are found in L- and D-enantiomers. The change from one form to the other will change the primary structure of polypeptides and proteins and may affect their function and biological activity. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest in manipulating the chirality of polypeptides to enhance their biomolecular interactions. In this review, we discuss the first examples of up-and-down homeostasis regulation by two enantiomeric drugs: immunostimulant Thymogen (L-Glu-L-Trp) and immunosuppressor Thymodepressin (D-Glu(D-Trp)). This study shows the perspective of exploring chirality to remove the chiral wall between L- and D-biomolecules. The selected clinical result will be discussed.
Collapse
Affiliation(s)
- Vladislav Deigin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia; (V.D.); (O.V.)
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
| | - Julia Vinogradova
- The Department of Hospital Therapy No. 2, I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., Building 2, Moscow 119991, Russia; (J.V.); (D.V.)
| | - Dmitrii Vinogradov
- The Department of Hospital Therapy No. 2, I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., Building 2, Moscow 119991, Russia; (J.V.); (D.V.)
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
| | - Dmitrii Medvedev
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
- The Department of Social Rehabilitation and Occupational Therapy of the St. Petersburg Medical and Social Institute, Kondratievsky St., 72A, St. Petersburg 195271, Russia
| | - Alexander Krasichkov
- Department of Radio Engineering Systems, Saint Petersburg Electrotechnical University ‘LETI’, St. Petersburg 197376, Russia
| | - Olga Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia; (V.D.); (O.V.)
| |
Collapse
|
5
|
Zhou D, Wang X, Zou J, Song J, Su P, Yang Y, Wu L. Determination of [Glu 1]-fibrinopeptide B purity by gas chromatography - isotope dilution mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1741-1747. [PMID: 38372017 DOI: 10.1039/d3ay02114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The present work assessed the purity of [Glu1]-fibrinopeptide B (GFB) as a model peptide using gas chromatography - isotope dilution mass spectrometry. GFB and various isotope-labeled amino acids were hydrolyzed in HCl and then derivatized using optimized procedures. The primary impurity in GFB was also identified and used to correct the final result. A method repeatability of 0.5% was achieved and linear calibrations were obtained for five amino acids. The LOD and LOQ were 0.041 to 0.096 μg g-1, and 0.16 to 0.56 μg g-1, respectively. The purity of GFB was found to be (0.715 ± 0.012) g g-1. This technique exhibited comparable accuracy to that obtainable from liquid chromatography - isotope dilution mass spectrometry but at lower cost. This method could be employed as a reference technique or in fields such as clinical diagnostics or bio-pharmaceutical peptide purity analysis.
Collapse
Affiliation(s)
- Dongmei Zhou
- National Institute of Metrology, P.R. China, No. 18, North Third Ring East Road, Beijing, China.
| | - Xianxia Wang
- National Institute of Metrology, P.R. China, No. 18, North Third Ring East Road, Beijing, China.
| | - Jun Zou
- China Quality Certification Centre, Building 3, Zone 9, No. 188, South Fourth Ring West Road, Fengtai District, Beijing, China.
| | - Jiayi Song
- Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, China.
| | - Ping Su
- Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, China.
| | - Yi Yang
- Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, China.
| | - Liqing Wu
- National Institute of Metrology, P.R. China, No. 18, North Third Ring East Road, Beijing, China.
| |
Collapse
|
6
|
Deigin V, Linkova N, Volpina O. Advancement from Small Peptide Pharmaceuticals to Orally Active Piperazine-2,5-dion-Based Cyclopeptides. Int J Mol Sci 2023; 24:13534. [PMID: 37686336 PMCID: PMC10487935 DOI: 10.3390/ijms241713534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The oral delivery of peptide pharmaceuticals has long been a fundamental challenge in drug development. A new chemical platform was designed based on branched piperazine-2,5-diones for creating orally available biologically active peptidomimetics. The platform includes a bio-carrier with "built-in" functionally active peptide fragments or bioactive molecules that are covalently attached via linkers. The developed platform allows for a small peptide to be taken with a particular biological activity and to be transformed into an orally stable compound displaying the same activity. Based on this approach, various peptidomimetics exhibiting hemostimulating, hemosuppressing, and adjuvant activity were prepared. In addition, new examples of a rare phenomenon when enantiomeric molecules demonstrate reciprocal biological activity are presented. Finally, the review summarizes the evolutionary approach of the short peptide pharmaceutical development from the immunocompetent organ separation to orally active cyclopeptides and peptidomimetics.
Collapse
Affiliation(s)
- Vladislav Deigin
- The Laboratory of Synthetic Vaccines of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| | - Natalia Linkova
- The Research Laboratory of the Development of Drug Delivery Systems, St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
| | - Olga Volpina
- The Laboratory of Synthetic Vaccines of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| |
Collapse
|
7
|
Dergunova LV, Filippenkov IB, Limborska SA, Myasoedov NF. Neuroprotective Peptides and New Strategies for Ischemic Stroke Drug Discoveries. Genes (Basel) 2023; 14:genes14050953. [PMID: 37239313 DOI: 10.3390/genes14050953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Ischemic stroke continues to be one of the leading causes of death and disability in the adult population worldwide. The currently used pharmacological methods for the treatment of ischemic stroke are not effective enough and require the search for new tools and approaches to identify therapeutic targets and potential neuroprotectors. Today, in the development of neuroprotective drugs for the treatment of stroke, special attention is paid to peptides. Namely, peptide action is aimed at blocking the cascade of pathological processes caused by a decrease in blood flow to the brain tissues. Different groups of peptides have therapeutic potential in ischemia. Among them are small interfering peptides that block protein-protein interactions, cationic arginine-rich peptides with a combination of various neuroprotective properties, shuttle peptides that ensure the permeability of neuroprotectors through the blood-brain barrier, and synthetic peptides that mimic natural regulatory peptides and hormones. In this review, we consider the latest achievements and trends in the development of new biologically active peptides, as well as the role of transcriptomic analysis in identifying the molecular mechanisms of action of potential drugs aimed at the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lyudmila V Dergunova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Ivan B Filippenkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Svetlana A Limborska
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Nikolay F Myasoedov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
8
|
Kozin SA. Role of Interaction between Zinc and Amyloid Beta in Pathogenesis of Alzheimer’s Disease. BIOCHEMISTRY (MOSCOW) 2023; 88:S75-S87. [PMID: 37069115 DOI: 10.1134/s0006297923140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Progression of Alzheimer's disease is accompanied by the appearance of extracellular deposits in the brain tissues of patients with characteristic supramolecular morphology (amyloid plaques) the main components of which are β-amyloid isoforms (Aβ) and biometal ions (zinc, copper, iron). For nearly 40 years and up to the present time, the vast majority of experimental data indicate critical role of formation and accumulation of amyloid plaques (cerebral amyloidogenesis) in pathogenesis of Alzheimer's disease, however, nature of the molecular agents that initiate cerebral amyloidogenesis, as well as causes of aggregation of the native Aβ molecules in vivo remained unknown for a long time. This review discusses the current level of fundamental knowledge about the molecular mechanisms of interactions of zinc ions with a number of Aβ isoforms present in amyloid plaques of the patients with Alzheimer's disease, and also shows how this knowledge made it possible to identify driving forces of the cerebral amyloidogenesis in Alzheimer's disease and made it possible to determine fundamentally new biomarkers and drug targets as part of development of innovative strategy for diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|