1
|
Pallathadka H, Jabir M, Rasool KH, Hanumanthaiah M, Sharma N, Pramanik A, Rab SO, Jawad SF, Oghenemaro EF, Mustafa YF. siRNA-based therapy for overcoming drug resistance in human solid tumours; molecular and immunological approaches. Hum Immunol 2025; 86:111221. [PMID: 39700968 DOI: 10.1016/j.humimm.2024.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
RNA interference (RNAi) is a primordial biological process that protects against external intrusion. SiRNA has the potential to selectively silence disease-related genes in a sequence-specific way, thus offering a promising therapeutic approach. The efficacy of siRNA-based therapies in cancer treatment has gained significant recognition due to multiple studies demonstrating its ability to effectively suppress cancer cells' growth and multiplication. Moreover, siRNA-based medicines have shown considerable promise in enhancing the sensitivity of cancer cells to chemotherapy and other treatment methods by suppressing genes that play a role in the development of drug resistance. Exploring and identifying functional genes linked to cancer cell characteristics and drug resistance is crucial for developing effective siRNAs for cancer treatment and advancing targeted and personalized therapeutics. Targeting and silencing genes in charge of resistance mechanisms, such as those involved in drug efflux, cell survival, or DNA repair, is possible with siRNA therapy in the context of drug resistance, especially cancer. Through inhibiting these genes, siRNA therapy can prevent resistance and restore the efficacy of traditional medications. This review addresses the potential of siRNAs in addressing drug resistance in human tumours, opening up new possibilities in cancer therapy. This review article offers a non-systematic summary of how different siRNA types contribute to cancer cells' treatment resistance. Using pertinent keywords, sources were chosen from reliable databases, including PubMed, Scopus, and Google Scholar. The review covered essential papers in this area and those that mainly addressed the function of siRNA in drug resistance. The articles examined in connection with the title of this review were primarily published from 2020 onward and are based on in vitro studies. Furthermore, this article examines the potential barriers and prospective perspectives of siRNA therapies.
Collapse
Affiliation(s)
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | | | - Malathi Hanumanthaiah
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri - 140307, Mohali, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001 Babil, Iraq.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Delta State University, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
2
|
Zhao X, Qi X, Liu D, Che X, Wu G. A Novel Approach for Bladder Cancer Treatment: Nanoparticles as a Drug Delivery System. Int J Nanomedicine 2024; 19:13461-13483. [PMID: 39713223 PMCID: PMC11662911 DOI: 10.2147/ijn.s498729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Bladder cancer represents one of the most prevalent malignant neoplasms of the urinary tract. In the Asian context, it represents the eighth most common cancer in males. In 2022, there were approximately 613,791 individuals diagnosed with bladder cancer worldwide. Despite the availability of efficacious treatments for the two principal forms of bladder cancer, namely non-invasive and invasive bladder cancer, the high incidence of recurrence following treatment and the suboptimal outcomes observed in patients with high-grade and advanced disease represent significant concerns in the management of bladder cancer at this juncture. Nanoparticles have gained attention for their excellent properties, including stable physical properties, a porous structure that can be loaded with a variety of substances, and so on. The in-depth research on nanoparticles has led to their emergence as a new class of nanoparticles for combination therapy, due to their advantageous properties. These include the extension of the drug release window, the enhancement of drug bioavailability, the improvement of drug targeting ability, the reduction of local and systemic toxicity, and the simultaneous delivery of multiple drugs for combination therapy. As a result, nanoparticles have become a novel agent of the drug delivery system. The advent of nanoparticles has provided a new impetus for the development of non-surgical treatments for bladder cancer, including chemotherapy, immunotherapy, gene therapy and phototherapy. The unique properties of nanoparticles have facilitated the combination of diverse non-surgical therapeutic modalities, enhancing their overall efficacy. This review examines the recent advancements in the use of nanoparticles in non-surgical bladder cancer treatments, encompassing aspects such as delivery, therapeutic efficacy, and the associated toxicity of nanoparticles, as well as the challenges encountered in clinical applications.
Collapse
Affiliation(s)
- Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| |
Collapse
|
3
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
4
|
Wu C, Lu N, Peng L, Lin M, Bai Y, Lu M, Deng J, Wang J. Regulation of inflammatory macrophages by oral mineralized metal-organic framework nanoparticles for the synergistic treatment of ulcerative colitis and liver injury. CHEMICAL ENGINEERING JOURNAL 2023; 468:143655. [DOI: 10.1016/j.cej.2023.143655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
|
5
|
Allahyarzadeh Khiabani N, Amin Doustvandi M, Mohammadnejad F, Salmani Hassan Kohal E, Boushehri N, Jafarlou M, Baradaran B. Combination of B7H6-siRNA and temozolomide synergistically reduces stemness and migration properties of glioblastoma cancer cells. Exp Cell Res 2023:113667. [PMID: 37247720 DOI: 10.1016/j.yexcr.2023.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Glioblastoma multiforme (GBM) is among the malignant brain tumors of the central nervous system (CNS). The survival of this disease is about 14 months after diagnosis. To date, temozolomide is known as first-line therapy for glioma. Drug resistance and severe side effects against this drug are important obstacles to the effective treatment of this cancer. Small interfering RNA (siRNA) can adjust the expression of several genes and is used as a new method of gene therapy. Recent studies have shown that siRNAs can increase the sensitivity of cancer cells to chemotherapy drugs. This study aimed to understand the potential role and molecular mechanism of the combination therapy of B7H6-siRNA and temozolomide in glioblastoma cancer. U87 cells were treated with B7H6-siRNA and temozolomide, separately and in combination. Cell viability, stemness, cell migration, and apoptosis were measured. The results of this work presented the synergistic effect of B7H6-siRNA and temozolomide in inhibiting the cancerous features of the U87 cell line. Down-regulating B7H6-siRNA expression inhibited the cell viability of U87 glioblastoma cancer cells and increased their sensitivity to temozolomide. In addition, a noteworthy decrease in cell migration ability and stemness, an increase in apoptosis were observed in the combined groups compared to B7H6-siRNA and temozolomide individually. According to the results, a combination of B7H6-siRNA and temozolomide can be a promising strategy in glioblastoma cancer therapy.
Collapse
Affiliation(s)
- Nadia Allahyarzadeh Khiabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Amin Doustvandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Neda Boushehri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Zhang HH, Xiang J, Yin BC, Ye BC. Overcoming Multidrug Resistance by Base-Editing-Induced Codon Mutation. ACS Pharmacol Transl Sci 2023; 6:812-819. [PMID: 37200813 PMCID: PMC10186359 DOI: 10.1021/acsptsci.3c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 05/20/2023]
Abstract
Multidrug resistance (MDR) is the main obstacle in cancer chemotherapy. ATP binding cassette (ABC) transporters on the MDR cell membrane can transport a wide range of antitumor drugs out of cells, which is one of the main causes of MDR. Therefore, disturbing ABC transporters becomes the key to reversing MDR. In this study, we implement a cytosine base editor (CBE) system to knock out the gene encoding ABC transporters by base editing. When the CBE system works in MDR cells, the MDR cells are manipulated, and the genes encoding ABC transporters can be inactivated by precisely changing single in-frame nucleotides to induce stop (iSTOP) codons. In this way, the expression of ABC efflux transporters is reduced and intracellular drug retention is significantly increased in MDR cells. Ultimately, the drug shows considerable cytotoxicity to the MDR cancer cells. Moreover, the substantial downregulation of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) implies the successful application of the CBE system in the knockout of different ABC efflux transporters. The recovery of chemosensitivity of MDR cancer cells to the chemotherapeutic drugs revealed that the system has a satisfactory universality and applicability. We believe that the CBE system will provide valuable clues for the use of CRISPR technology to defeat the MDR of cancer cells.
Collapse
Affiliation(s)
- He-Hua Zhang
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
| | - Jian Xiang
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
| | - Bin-Cheng Yin
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
- Institute
of Engineering Biology and Health, Collaborative Innovation Center
of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical
Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
- Institute
of Engineering Biology and Health, Collaborative Innovation Center
of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical
Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- School
of Chemistry and Chemical Engineering, Shihezi
University, Shihezi 832000, Xinjiang, China
| |
Collapse
|
7
|
Losurdo P, de Manzini N, Palmisano S, Grassi M, Parisi S, Rizzolio F, Tierno D, Biasin A, Grassi C, Truong NH, Grassi G. Potential Application of Small Interfering RNA in Gastro-Intestinal Tumors. Pharmaceuticals (Basel) 2022; 15:1295. [PMID: 36297407 PMCID: PMC9612316 DOI: 10.3390/ph15101295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
Despite the progress made in the diagnoses and therapy of gastrointestinal cancers, these diseases are still plagued by a high mortality. Thus, novel therapeutic approaches are urgently required. In this regard, small interfering RNA (siRNA), double-stranded RNA molecules able to specifically target the mRNA of pathological genes, have the potential to be of therapeutic value. To be effective in the human body, siRNAs need to be protected against degradation. Additionally, they need to target the tumor, leaving the normal tissue untouched in an effort to preserve organ function. To accomplish these tasks, siRNAs have been formulated with smart delivery systems such has polymers and lipids. While siRNA protection is not particularly difficult to achieve, their targeting of tumor cells remains problematic. Here, after introducing the general features of gastrointestinal cancers, we describe siRNA characteristics together with representative delivery systems developed for gastrointestinal cancers. Afterward, we present a selection of research papers employing siRNAs against upper- and lower- gastrointestinal cancers. For the liver, we also consider papers using siRNAs to combat liver cirrhosis, a relevant risk factor for liver cancer development. Finally, we present a brief description of clinical trials employing siRNAs for gastrointestinal cancers.
Collapse
Affiliation(s)
- Pasquale Losurdo
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Nicolò de Manzini
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Silvia Palmisano
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, 34127 Trieste, Italy
| | - Salvatore Parisi
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, 33081 Aviano, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, 33081 Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, 34127 Trieste, Italy
| | - Chiara Grassi
- Degree Course in Medicine, University of Trieste, 34100 Trieste, Italy
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, VNUHCM—University of Science, Ho Chi Minh City 700000, Vietnam
- Laboratory of Stem Cell Research and Application, VNUHCM—University of Science, Ho Chi Minh City 700000, Vietnam
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
8
|
陈 锐, 徐 燕. [Opportunities and Challenges of RNA Interference Therapeutics in Oncology]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:482-486. [PMID: 35899445 PMCID: PMC9346155 DOI: 10.3779/j.issn.1009-3419.2022.102.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Abstract
As the discovery of RNA interference (RNAi) and the gradual conquering of a series of technical issues, a few of RNAi therapeutics have been approved in the non-tumor field abroad. With the advantages of high specificity, long duration of efficacy, and high success rate of development, RNAi therapeutics have become the emerging field globally. There are no RNAi therapeutics approved in oncology so far, and people are hoping a breakthrough in the field. In the present article, the characteristics and potential anti-tumor mechanism of RNAi therapeutics, difficulties in delivery system and progress in oncology are described, and the potential reasons why their success in non-tumor field is difficult to be simply replicated in tumor field are analyzed, providing reference for research and clinical transformation of RNAi therapeutics in oncology.
.
Collapse
Affiliation(s)
- 锐 陈
- 100730 北京,中国医学科学院北京协和医院临床药理研究中心Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - 燕 徐
- 100730 北京,中国医学科学院北京协和医院呼吸与危重症医学科Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|