1
|
Ostróżka-Cieślik A, Michalak M, Bryś T, Kudła M. The Potential of Hydrogel Preparations Containing Plant Materials in Supporting the Treatment of Vaginal and Vulvar Infections-Current State of Knowledge. Polymers (Basel) 2025; 17:470. [PMID: 40006132 PMCID: PMC11859247 DOI: 10.3390/polym17040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Vaginal hydrogels are a modern alternative to solid (tablets, globules) and other semi-solid forms of medication (ointments, creams) in the control of pathogenic microorganisms in diseases of the female reproductive tract. This review aims to summarize the current state of knowledge regarding the efficacy of hydrogels containing plant materials in the treatment of vaginal and vulvar infections. New therapies are essential to address the growing antimicrobial resistance crisis. Google Scholar, Web of Science, Cochrane, and Medline (PubMed) databases were searched. Twenty-five studies were included in the review, including basic, pre-clinical, and clinical studies. The results obtained confirmed the therapeutic potential of plant raw materials embedded in the polymer matrix of hydrogels. However, due to the small number of clinical trials conducted, further research in this area is needed.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia,41-200 Sosnowiec, Poland
| | - Monika Michalak
- Department of Pharmaceutical Sciences, Medical College, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Tomasz Bryś
- Clinical Department of Perinatology and Oncological Gynaecology, Medical University of Silesia, 41-200 Sosnowiec, Poland; (T.B.); (M.K.)
| | - Marek Kudła
- Clinical Department of Perinatology and Oncological Gynaecology, Medical University of Silesia, 41-200 Sosnowiec, Poland; (T.B.); (M.K.)
| |
Collapse
|
2
|
Jia S, Huang S, Jimo R, AXi Y, Lu Y, Kong Z, Ma J, Li H, Luo X, Qu Y, Gou K, Zeng R, Wang X. In-situ forming carboxymethyl chitosan hydrogel containing Paeonia suffruticosa Andr. leaf extract for mixed infectious vaginitis treatment by reshaping the micro-biota. Carbohydr Polym 2024; 339:122255. [PMID: 38823921 DOI: 10.1016/j.carbpol.2024.122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Mixed infectious vaginitis poses a serious threat to female reproductive health due to complex pathogenic factors, a long course and easy recurrence. Currently, antibiotic-based treatment methods are facing a crisis of drug resistance and secondary dysbiosis. Exploring effective drugs for the treatment of mixed vaginitis from Paeonia suffruticosa Andr., a natural traditional Chinese medicine with a long history of medicinal use, is a feasible treatment strategy. P. suffruticosa Andr. leaf extract (PLE) has significant anti-bacterial effects due to its rich content of polyphenols and flavonoids. The polyphenols in peony leaves have the potential to make carboxymethyl chitosan form in situ gel. In the current study, PLE and carboxymethyl chitosan were combined to develop another type of natural anti-bacterial anti-oxidant hydrogel for the treatment of mixed infectious vaginitis. Through a series of characterisations, CP had a three-dimensional network porous structure with good mechanical properties, high water absorption, long retention and a slow-release drug effect. The mixed infectious vaginitis mouse model induced by a mixture of pathogenic bacteria was used to investigate the therapeutic effects of CP in vivo. The appearance of the vagina, H&E colouring of the tissue and inflammatory factors (TNF-α, IL-6) confirm the good anti-vaginal effect of CP. Therefore, CP was expected to become an ideal effective strategy to improve mixed infection vaginitis due to its excellent hydrogel performance and remarkable ability to regulate flora.
Collapse
Affiliation(s)
- Shiami Jia
- College of Pharmacy, Southwest Minzu University, Chengdu & Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, 610225, China
| | - Shengting Huang
- College of Pharmacy, Southwest Minzu University, Chengdu & Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, 610225, China
| | - Rezhemu Jimo
- College of Pharmacy, Southwest Minzu University, Chengdu & Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, 610225, China
| | - Yongbu AXi
- College of Pharmacy, Southwest Minzu University, Chengdu & Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, 610225, China
| | - Yuanhui Lu
- College of Pharmacy, Southwest Minzu University, Chengdu & Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, 610225, China
| | - Ziling Kong
- College of Pharmacy, Southwest Minzu University, Chengdu & Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, 610225, China
| | - Jun Ma
- College of Pharmacy, Southwest Minzu University, Chengdu & Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, 610225, China
| | - Heran Li
- School of Pharmacy, China Medical University, Puhe RD77, 110122, China
| | - Xiao Luo
- ChengDu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Chengdu 610000, China
| | - Yan Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Kaijun Gou
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu & Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, 610225, China; Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, China.
| | - Xiao Wang
- College of Pharmacy, Southwest Minzu University, Chengdu & Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, 610225, China.
| |
Collapse
|
3
|
Paczkowska-Walendowska M, Rosiak N, Plech T, Karpiński TM, Miklaszewski A, Witkowska K, Jaskólski M, Erdem C, Cielecka-Piontek J. Electrospun Nanofibers Loaded with Marigold Extract Based on PVP/HPβCD and PCL/PVP Scaffolds for Wound Healing Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1736. [PMID: 38673093 PMCID: PMC11050774 DOI: 10.3390/ma17081736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Marigold flower is a traditionally used plant material topically applied on the skin due to its anti-inflammatory properties and antibacterial activity. This potential of action justifies the implementation of marigold extract in nanofiber scaffolds based on poly-vinylpyrrolidone/hydroxypropyl-β-cyclodextrin (PVP/HPβCD) and polycaprolactone/polyvinylpyrrolidone (PCL/PVP) obtained by electrospinning for wound treatment. Using SEM, the morphology of electrospun scaffolds showed a fiber diameter in the range of 298-527 nm, with a uniform and bead-free appearance. ATR-FTIR spectroscopy confirmed the presence of marigold extracts in nanofibrous scaffolds. The composition of the nanofibers can control the release; in the case of PVP/HPβCD, immediate release of 80% of chlorogenic acid (an analytical and functional marker for marigold extract) was achieved within 30 min, while in the case of PCL/PVP, the controlled release was achieved within 24 h (70% of chlorogenic acid). All systems showed weak antibacterial activity against skin and wound-infecting bacteria Staphylococcus aureus (MIC 100 mg/mL), and Pseudomonas aeruginosa (MIC 200 mg/mL) and yeasts Candida albicans (MIC 100 mg/mL). Analysis of the effect of different scaffold compositions of the obtained electrofibers showed that those based on PCL/PVP had better wound healing potential. The scratch was closed after 36 h, compared to the 48 h required for PVP/HPβCD. Overall, the study shows that scaffolds of PCL/PVP nanofibers loaded with classic marigold extract have the best potential as wound dressing materials because of their ability to selectively modulate inflammation (via inhibition of hyaluronidase enzyme) and supportive antimicrobial properties, thereby aiding in the early stages of wound healing and repair.
Collapse
Affiliation(s)
- Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.P.-W.); (N.R.); (K.W.); (M.J.); (C.E.)
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.P.-W.); (N.R.); (K.W.); (M.J.); (C.E.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Radziwillowska 11, 20-080 Lublin, Poland;
- Faculty of Medicine, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Medical Faculty, Poznan University of Medical Sciences, Rokietnicka 10, 60-806 Poznan, Poland;
| | - Andrzej Miklaszewski
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Katarzyna Witkowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.P.-W.); (N.R.); (K.W.); (M.J.); (C.E.)
| | - Maciej Jaskólski
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.P.-W.); (N.R.); (K.W.); (M.J.); (C.E.)
| | - Cansu Erdem
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.P.-W.); (N.R.); (K.W.); (M.J.); (C.E.)
- Department Pharmaceutical Chemistry, Ege Üniversitesi, 35040 İzmir, Turkey
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.P.-W.); (N.R.); (K.W.); (M.J.); (C.E.)
| |
Collapse
|
4
|
Witkowska K, Paczkowska-Walendowska M, Plech T, Szymanowska D, Michniak-Kohn B, Cielecka-Piontek J. Chitosan-Based Hydrogels for Controlled Delivery of Asiaticoside-Rich Centella asiatica Extracts with Wound Healing Potential. Int J Mol Sci 2023; 24:17229. [PMID: 38139059 PMCID: PMC10743457 DOI: 10.3390/ijms242417229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Centella asiatica extract is a valued plant material with known anti-inflammatory and anti-microbiological properties. Using the Design of Experiment (DoE) approach, it was possible to obtain an optimized water/alcoholic extract from Centella asiatica, which allowed the preparation of the final material with biological activity in the wound healing process. Studies on the novel applications of Centella asiatica in conjunction with the multifunctional chitosan carrier have been motivated by the plant's substantial pharmacological activity and the need to develop new and effective methods for the treatment of chronic wounds. The controlled release of asiaticoside was made possible by the use of chitosan as a carrier. Based on the findings of investigations using the PAMPA skin assay, which is a model imitating the permeability of actives through skin, this compound, characterized by sustained release from the chitosan delivery system, was identified as being well able to permeate biological membranes such as skin. Chitosan and the lyophilized extract of Centella asiatica worked synergistically to block hyaluronidase, exert efficient microbiological activity and take part in the wound healing process, as proven in an in vitro model. A formulation containing 3% extract with 3% medium-molecular-weight chitosan was indicated as a potentially new treatment with high compliance and effectiveness for patients. Optimization of the chitosan-based hydrogel preparation ensured the required rheological properties necessary for the release of the bioactive from the chitosan delivery system and demonstrated a satisfactory antimicrobial activity.
Collapse
Affiliation(s)
- Katarzyna Witkowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (M.P.-W.); (D.S.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (M.P.-W.); (D.S.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Radziwillowska 11, 20-080 Lublin, Poland;
| | - Daria Szymanowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (M.P.-W.); (D.S.)
| | - Bożena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA;
- Center for Dermal Research, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (M.P.-W.); (D.S.)
| |
Collapse
|
5
|
Segneanu AE, Vlase G, Vlase T, Sicoe CA, Ciocalteu MV, Herea DD, Ghirlea OF, Grozescu I, Nanescu V. Wild-Grown Romanian Helleborus purpurascens Approach to Novel Chitosan Phyto-Nanocarriers-Metabolite Profile and Antioxidant Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:3479. [PMID: 37836219 PMCID: PMC10574898 DOI: 10.3390/plants12193479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The current nanomedicinal approach combines medicinal plants and nanotechnology to create new scaffolds with enhanced bioavailability, biodistribution and controlled release. In an innovative approach to herb encapsulation in nanosized chitosan matrices, wild-grown Romanian Helleborus purpurascens was used to prepare two new chitosan nanocarriers. The first carrier preparation involved the nanoencapsulation of hellebore in chitosan. The second carrier emerged from two distinct stages: hellebore-AgNPs phyto-carrier system succeeded by nanoencapsulation in chitosan. The morphostructural characteristics and thermal behavior of these newly prepared nanocarriers were examined using FT-IR, XRD, DLS, SEM, EDS and thermogravimetric analyses. In addition, the encapsulation yield, encapsulation efficiency and encapsulation contents were investigated. The antioxidant activity was estimated using four in vitro, noncompetitive methods: total phenolic assay; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay; phosphomolybdate (i.e., total antioxidant capacity); and iron(III)-phenanthroline antioxidant assay. Moreover, this study reports the first low-molecular-weight metabolite profile of wild-grown Romanian Helleborus purpurascens Waldst. & Kit. A total of one hundred and five secondary metabolites were identified in the mass spectra (MS)-positive mode from fourteen secondary metabolite categories (alkaloids, butenolides, bufadienolides, phytoecdysteroids, amino acids and peptides, terpenoids, fatty acids, flavonoids, phenolic acids, sterols, glycosides, carbohydrates, nucleosides and miscellaneous). The collective results suggest the potential application is a promising new antioxidant vehicle candidate in tumor therapeutic strategy.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research-West, University of Timisoara (ICAM-WUT), Oituz Nr. 4, 300086 Timisoara, Romania; (G.V.); (T.V.)
| | - Gabriela Vlase
- Institute for Advanced Environmental Research-West, University of Timisoara (ICAM-WUT), Oituz Nr. 4, 300086 Timisoara, Romania; (G.V.); (T.V.)
- Research Centre for Thermal Analysis Environmental Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | - Titus Vlase
- Institute for Advanced Environmental Research-West, University of Timisoara (ICAM-WUT), Oituz Nr. 4, 300086 Timisoara, Romania; (G.V.); (T.V.)
- Research Centre for Thermal Analysis Environmental Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | - Crina Andreea Sicoe
- Faculty of Chemistry, Biology, Geography, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania;
| | - Maria Viorica Ciocalteu
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania; (M.V.C.); (V.N.)
| | - Dumitru Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd., 700050 Iasi, Romania;
| | - Ovidiu-Florin Ghirlea
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, square Eftimie Murgu No. 2, 300041 Timisoara, Romania;
| | - Ioan Grozescu
- CAICON Department, University Politehnica Timisoara, 300006 Timisoara, Romania;
| | - Valentin Nanescu
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania; (M.V.C.); (V.N.)
| |
Collapse
|
6
|
Is Caperatic Acid the Only Compound Responsible for Activity of Lichen Platismatia glauca within the Nervous System? Antioxidants (Basel) 2022; 11:antiox11102069. [PMID: 36290793 PMCID: PMC9598164 DOI: 10.3390/antiox11102069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Lichens are a source of various biologically active compounds. However, the knowledge about them is still scarce, and their use in medicine is limited. This study aimed to investigate the therapeutic potential of the lichen Platismatia glauca and its major metabolite caperatic acid in regard to their potential application in the treatment of central nervous system diseases, especially neurodegenerative diseases and brain tumours, such as glioblastoma. First, we performed the phytochemical analysis of the tested P. glauca extracts based on FT-IR derivative spectroscopic and gas chromatographic results. Next the antioxidant properties were determined, and moderate anti-radical activity, strong chelating properties of Cu2+ and Fe2+ ions, and a mild effect on the antioxidant enzymes of the tested extracts and caperatic acid were proved. Subsequently, the influence of the tested extracts and caperatic acid on cholinergic transmission was determined by in vitro and in silico studies confirming that inhibitory effect on butyrylcholinesterase is stronger than against acetylcholinesterase. We also confirmed the anti-inflammatory properties of P. glauca extracts and caperatic acid using a COX-2 and hyaluronidase inhibition models. Moreover, our studies show the cytotoxic and pro-apoptotic activity of the P. glauca extracts against T98G and U-138 MG glioblastoma multiforme cell lines. In conclusion, it is possible to assume that P. glauca extracts and especially caperatic acid can be regarded as the source of the valuable substances to finding new therapies of central nervous system diseases.
Collapse
|
7
|
Paczkowska-Walendowska M, Cielecka-Piontek J. Chitosan as a Functional Carrier for the Local Delivery Anti-Inflammatory Systems Containing Scutellariae baicalensis radix Extract. Pharmaceutics 2022; 14:2148. [PMID: 36297583 PMCID: PMC9611887 DOI: 10.3390/pharmaceutics14102148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 08/27/2023] Open
Abstract
The aim of the study was to establish the influence of chitosan on the preparation of systems containing Scutellariae baicalensis radix extract and to demonstrate the potential of anti-inflammatory action for the treatment of periodontitis. In the first stage, the impact of the variables (extraction mixture composition, temperature, and the number of extraction cycles) on the extracted samples' biological characteristics was analyzed using the Design of Experiments (DoE) approach. The best conditions for baicalin, baicalein, and wogonin extraction from Scutellariae baicalensis radix were 80% methanol in the extraction mixture, 70 °C, and 4 cycles per 60 min. The DoE approach can be used to choose the best chitosan system parameters with equal success. An increase in the deacetylation degree of chitosan used in the system improved the potential for reducing free radicals and inhibiting the hyaluronidase enzyme. Also, increasing the degree of chitosan deacetylation results in increased resistance of the carrier to biodegradation and an extended baicalin release profile, which is also associated with an increase in the viscosity of the chitosan-based system. In total, the system of a freeze-dried extract with chitosan 90/500 in the ratio of 2:1 (system S9) turns out to be the one with the best physicochemical (high percentage of baicalin release and the highest viscosity conditioning the prolonged stay at the site of administration) and biological properties (the highest antioxidant and anti-inflammatory activities), resulting in the highest potential for use in the treatment of oral inflammatory diseases.
Collapse
|
8
|
Graczyk F, Gębalski J, Makuch-Kocka A, Gawenda-Kempczyńska D, Ptaszyńska AA, Grzyb S, Bogucka-Kocka A, Załuski D. Phenolic Profile, Antioxidant, Anti-Enzymatic and Cytotoxic Activity of the Fruits and Roots of Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. Molecules 2022; 27:5579. [PMID: 36080343 PMCID: PMC9457789 DOI: 10.3390/molecules27175579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. is well-known for its adaptogenic properties in traditional Eastern medicine. It has been categorized as an endangered species due to the over-exploitation of the roots. As a result, alternatives must be found, including the usage of renewable aerial parts such as fruits. The goal of this research was to determine the phenolic compounds and the enzymatic, antioxidant, and cytotoxic activities of the intractum gained from the E. senticosus fruits and the mixture of chloroform-methanol roots extract with naringenin (3:7:5). The obtained results showed, that the intractum contained 1.02 mg/g ext. of polyphenols, 0.30 mg/g ext. of flavonoids, and 0.19 mg/g ext. of phenolic acids. In turn, the mixture of chloroform-methanol roots extract with naringenin (3:7:5) contained 159.27 mg/g ext. of polyphenols, 137.47 mg/g ext. of flavonoids, and 79.99 mg/g ext. of phenolic acids. Regarding the anti-enzymatic assay, the IC50 values for tyrosinase and hyaluronidase were equal to 586.83 and 217.44 [μg/mL] for the intractum, and 162.56 and 44.80 [μg/mL] for the mixture, respectively. Both preparations have possessed significant antioxidant activity in the ABTS, DPPH, and ferrozine tests. No cytotoxic effect on the FaDu and HEP G2 cancer cell lines was observed. Our findings support the traditional use of fruits and roots. Moreover, the results indicate also that adaptogens are rather nontoxic for normal and cancer cells, which corresponds with some hypotheses on adaptogens activity.
Collapse
Affiliation(s)
- Filip Graczyk
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Marie Curie-Skłodowska 9, 85-094 Bydgoszcz, Poland
| | - Jakub Gębalski
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Marie Curie-Skłodowska 9, 85-094 Bydgoszcz, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Dorota Gawenda-Kempczyńska
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Marie Curie-Skłodowska 9, 85-094 Bydgoszcz, Poland
| | - Aneta A. Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Sebastian Grzyb
- College of Engineering and Health in Warsaw, Bitwy Warszawskiej 1920 r. 18 Str., 02-366 Warsaw, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Daniel Załuski
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Marie Curie-Skłodowska 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|