1
|
Huang Y, Qiu N, Wang Y, Ouyang W, Liang M. Gene detection of VDR BsmI locus and its approteins, genes and growthplication in rational drug use in patients with osteoporosis. Per Med 2024; 21:219-225. [PMID: 38904290 DOI: 10.1080/17410541.2024.2366152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Aim: This paper determines the polymorphism distribution of the VDR BsmI gene in 350 patients and provides medication recommendations for osteoporosis based on detection results. Materials & methods: Chi-square tests compared genotype and allele frequencies with other populations. Results: Genotype frequencies were 91.66 bb, 8.72 Bb and 0.21% BB, with allelic frequencies of 95.43 b and 4.57% B, adhering to Hardy-Weinberg equilibrium. These findings suggest that VDR gene polymorphisms, particularly at the BsmIlocus, play an essential role in bone health and osteoporosis treatment. Genotype-based drug selection reduced adverse reactions from 14 to two cases. Conclusion: These findings improve clinical treatment efficacy and guide rational drug use for osteoporosis patients.
Collapse
Affiliation(s)
- Yu Huang
- Department of Pharmacy, Lunjiao Hospital, Shunde District, Foshan City, Guangdong Province, 528300, China
| | - Nan Qiu
- Department of Emergency, Shunde Julong Hospital, Foshan City, Guangdong Province, 528300, China
| | - Yunna Wang
- Department of Pharmacy, Lunjiao Hospital, Shunde District, Foshan City, Guangdong Province, 528300, China
| | - Wanjun Ouyang
- Department of Pharmacy, Lunjiao Hospital, Shunde District, Foshan City, Guangdong Province, 528300, China
| | - Miao Liang
- Department of Pharmacy, Lunjiao Hospital, Shunde District, Foshan City, Guangdong Province, 528300, China
| |
Collapse
|
2
|
del Real Á, Cruz R, Sañudo C, Pérez-Castrillón JL, Pérez-Núñez MI, Olmos JM, Hernández JL, García-Ibarbia C, Valero C, Riancho JA. High Frequencies of Genetic Variants in Patients with Atypical Femoral Fractures. Int J Mol Sci 2024; 25:2321. [PMID: 38396997 PMCID: PMC10889592 DOI: 10.3390/ijms25042321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
This study explores the genetic factors associated with atypical femoral fractures (AFF), rare fractures associated with prolonged anti-resorptive therapy. AFF are fragility fractures that typically appear in the subtrochanteric or diaphyseal regions of the femur. While some cases resemble fractures in rare genetic bone disorders, the exact cause remains unclear. This study investigates 457 genes related to skeletal homeostasis in 13 AFF patients by exome sequencing, comparing the results with osteoporotic patients (n = 27) and Iberian samples from the 1000 Genomes Project (n = 107). Only one AFF case carried a pathogenic variant in the gene set, specifically in the ALPL gene. The study then examined variant accumulation in the gene set, revealing significantly more variants in AFF patients than in osteoporotic patients without AFF (p = 3.7 × 10-5), particularly in ACAN, AKAP13, ARHGEF3, P4HB, PITX2, and SUCO genes, all of them related to osteogenesis. This suggests that variant accumulation in bone-related genes may contribute to AFF risk. The polygenic nature of AFF implies that a complex interplay of genetic factors determines the susceptibility to AFF, with ACAN, SUCO, AKAP13, ARHGEF3, PITX2, and P4HB as potential genetic risk factors. Larger studies are needed to confirm the utility of gene set analysis in identifying patients at high risk of AFF during anti-resorptive therapy.
Collapse
Affiliation(s)
- Álvaro del Real
- Departamento de Medicina y Psiquiatría, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain; (Á.d.R.); (C.S.); (J.M.O.); (J.L.H.); (C.V.)
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Carolina Sañudo
- Departamento de Medicina y Psiquiatría, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain; (Á.d.R.); (C.S.); (J.M.O.); (J.L.H.); (C.V.)
| | - José L. Pérez-Castrillón
- Internal Medicine Department, University Hospital Rio Hortega of Valladolid, 47012 Valladolid, Spain;
| | - María I. Pérez-Núñez
- Traumatology Department, University Hospital M. Valdecilla, 39008 Santander, Spain;
| | - Jose M. Olmos
- Departamento de Medicina y Psiquiatría, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain; (Á.d.R.); (C.S.); (J.M.O.); (J.L.H.); (C.V.)
- Internal Medicine Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain;
| | - José L. Hernández
- Departamento de Medicina y Psiquiatría, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain; (Á.d.R.); (C.S.); (J.M.O.); (J.L.H.); (C.V.)
- Internal Medicine Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain;
| | - Carmen García-Ibarbia
- Internal Medicine Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain;
| | - Carmen Valero
- Departamento de Medicina y Psiquiatría, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain; (Á.d.R.); (C.S.); (J.M.O.); (J.L.H.); (C.V.)
- Internal Medicine Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain;
| | - Jose A. Riancho
- Departamento de Medicina y Psiquiatría, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain; (Á.d.R.); (C.S.); (J.M.O.); (J.L.H.); (C.V.)
- Internal Medicine Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Tong X, Wang S, Zhang J, Fan Y, Liu Y, Wei W. Automatic Osteoporosis Screening System Using Radiomics and Deep Learning from Low-Dose Chest CT Images. Bioengineering (Basel) 2024; 11:50. [PMID: 38247927 PMCID: PMC10813496 DOI: 10.3390/bioengineering11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE Develop two fully automatic osteoporosis screening systems using deep learning (DL) and radiomics (Rad) techniques based on low-dose chest CT (LDCT) images and evaluate their diagnostic effectiveness. METHODS In total, 434 patients who underwent LDCT and bone mineral density (BMD) examination were retrospectively enrolled and divided into the development set (n = 333) and temporal validation set (n = 101). An automatic thoracic vertebra cancellous bone (TVCB) segmentation model was developed. The Dice similarity coefficient (DSC) was used to evaluate the segmentation performance. Furthermore, the three-class Rad and DL models were developed to distinguish osteoporosis, osteopenia, and normal bone mass. The diagnostic performance of these models was evaluated using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). RESULTS The automatic segmentation model achieved excellent segmentation performance, with a mean DSC of 0.96 ± 0.02 in the temporal validation set. The Rad model was used to identify osteoporosis, osteopenia, and normal BMD in the temporal validation set, with respective area under the receiver operating characteristic curve (AUC) values of 0.943, 0.801, and 0.932. The DL model achieved higher AUC values of 0.983, 0.906, and 0.969 for the same categories in the same validation set. The Delong test affirmed that both models performed similarly in BMD assessment. However, the accuracy of the DL model is 81.2%, which is better than the 73.3% accuracy of the Rad model in the temporal validation set. Additionally, DCA indicated that the DL model provided a greater net benefit compared to the Rad model across the majority of the reasonable threshold probabilities Conclusions: The automated segmentation framework we developed can accurately segment cancellous bone on low-dose chest CT images. These predictive models, which are based on deep learning and radiomics, provided comparable diagnostic performance in automatic BMD assessment. Nevertheless, it is important to highlight that the DL model demonstrates higher accuracy and precision than the Rad model.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wei
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China (S.W.); (Y.F.)
| |
Collapse
|
4
|
Association Studies in Clinical Pharmacogenetics. Pharmaceutics 2022; 15:pharmaceutics15010113. [PMID: 36678742 PMCID: PMC9867244 DOI: 10.3390/pharmaceutics15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
In recent times, the progress of Clinical Pharmacogenetics has been remarkable [...].
Collapse
|