1
|
Xing C, Zheng X, Deng T, Zeng L, Liu X, Chi X. The Role of Cyclodextrin in the Construction of Nanoplatforms: From Structure, Function and Application Perspectives. Pharmaceutics 2023; 15:pharmaceutics15051536. [PMID: 37242778 DOI: 10.3390/pharmaceutics15051536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclodextrins (CyDs) in nano drug delivery systems have received much attention in pursuit of good compatibility, negligible toxicity, and improved pharmacokinetics of drugs. Their unique internal cavity has widened the application of CyDs in drug delivery based on its advantages. Besides this, the polyhydroxy structure has further extended the functions of CyDs by inter- and intramolecular interactions and chemical modification. Furthermore, the versatile functions of the complex contribute to alteration of the physicochemical characteristics of the drugs, significant therapeutic promise, a stimulus-responsive switch, a self-assembly capability, and fiber formation. This review attempts to list recent interesting strategies regarding CyDs and discusses their roles in nanoplatforms, and may act as a guideline for developing novel nanoplatforms. Future perspectives on the construction of CyD-based nanoplatforms are also discussed at the end of this review, which may provide possible direction for the construction of more rational and cost-effective delivery vehicles.
Collapse
Affiliation(s)
- Chengyuan Xing
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoming Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Deng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ling Zeng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xin Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xinjin Chi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Vlach M, Coppens-Exandier H, Jamin A, Berchel M, Scaviner J, Chesné C, Montier T, Jaffrès PA, Corlu A, Loyer P. Liposome-Mediated Gene Transfer in Differentiated HepaRG™ Cells: Expression of Liver Specific Functions and Application to the Cytochrome P450 2D6 Expression. Cells 2022; 11:cells11233904. [PMID: 36497165 PMCID: PMC9737581 DOI: 10.3390/cells11233904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The goal of this study was to establish a procedure for gene delivery mediated by cationic liposomes in quiescent differentiated HepaRG™ human hepatoma cells. We first identified several cationic lipids promoting efficient gene transfer with low toxicity in actively dividing HepG2, HuH7, BC2 and progenitor HepaRG™ human hepatoma cells. The lipophosphoramidate Syn1-based nanovector, which allowed the highest transfection efficiencies of progenitor HepaRG™ cells, was next used to transfect differentiated HepaRG™ cells. Lipofection of these cells using Syn1-based liposome was poorly efficient most likely because the differentiated HepaRG™ cells are highly quiescent. Thus, we engineered the differentiated HepaRG™ Mitogenic medium supplement (ADD1001) that triggered robust proliferation of differentiated cells. Importantly, we characterized the phenotypical changes occurring during proliferation of differentiated HepaRG™ cells and demonstrated that mitogenic stimulation induced a partial and transient decrease in the expression levels of some liver specific functions followed by a fast recovery of the full differentiation status upon removal of the mitogens. Taking advantage of the proliferation of HepaRG™ cells, we defined lipofection conditions using Syn1-based liposomes allowing transient expression of the cytochrome P450 2D6, a phase I enzyme poorly expressed in HepaRG cells, which opens new means for drug metabolism studies in HepaRG™ cells.
Collapse
Affiliation(s)
- Manuel Vlach
- Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
- Institut AGRO Rennes-Angers, F-35042 Rennes, France
| | - Hugo Coppens-Exandier
- Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
- Biopredic International, F-35760 Saint Grégoire, France
| | - Agnès Jamin
- Biopredic International, F-35760 Saint Grégoire, France
| | - Mathieu Berchel
- Univ. Brest, CNRS, CEMCA, UMR 6521, F-29238 Brest, France
- Plateforme BiogenOuest SynNanoVect, F-44035 Nantes, France
| | - Julien Scaviner
- Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
- Biopredic International, F-35760 Saint Grégoire, France
| | | | - Tristan Montier
- Plateforme BiogenOuest SynNanoVect, F-44035 Nantes, France
- Univ. Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France
| | - Paul-Alain Jaffrès
- Univ. Brest, CNRS, CEMCA, UMR 6521, F-29238 Brest, France
- Plateforme BiogenOuest SynNanoVect, F-44035 Nantes, France
| | - Anne Corlu
- Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
- Correspondence: (A.C.); (P.L.); Tel.: +33-(02)-23233873 (P.L.)
| | - Pascal Loyer
- Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
- Plateforme BiogenOuest SynNanoVect, F-44035 Nantes, France
- Correspondence: (A.C.); (P.L.); Tel.: +33-(02)-23233873 (P.L.)
| |
Collapse
|
3
|
Brossard C, Vlach M, Jacquet L, Vène E, Dorcet V, Loyer P, Cammas-Marion S, Lepareur N. Hepatotropic Peptides Grafted onto Maleimide-Decorated Nanoparticles: Preparation, Characterization and In Vitro Uptake by Human HepaRG Hepatoma Cells. Polymers (Basel) 2022; 14:2447. [PMID: 35746020 PMCID: PMC9229302 DOI: 10.3390/polym14122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
We recently demonstrated the strong tropism of George Baker (GB) Virus A (GBVA10-9) and Plasmodium circumsporozoite protein (CPB) derived synthetic peptides towards hepatoma cells. In a first approach, these peptides were covalently bound to poly(benzyl malate) (PMLABe73) and poly(ethylene glycol)-block-PMLABe73 (PEG62-b-PMLABe73) (co)polymers, and corresponding peptide-decorated nanoparticles (NPs) were prepared by nanoprecipitation. We showed that peptide enhanced NPs internalization by hepatoma cells. In the present work, we set up a second strategy to functionalize NPs prepared from PMLABe73 derivates. First, maleimide-functionalized PMLABe73 (Mal-PMLABe73) and PEG62-b-PMLABe73 (Mal-PEG62-b-PMLABe73) were synthesized and corresponding NPs were prepared by nanoprecipitation. Then, peptides (GBVA10-9, CPB and their scramble controls GBVA10-9scr and CPBscr) with a thiol group were engrafted onto the NPs' maleimide groups using the Michael addition to obtain peptide functionalized NPs by post-formulation procedure. These peptide-modified NPs varied in diameter and dispersity depending on the considered peptides and/or (co)polymers but kept their spherical shape. The peptide-functionalized NPs were more efficiently internalized by HepaRG hepatoma cells than native and maleimide-NPs with various levels relying on the peptide's nature and the presence of PEG. We also observed important differences in internalization of NPs functionalized by the maleimide-thiol-peptide reaction compared to that of NPs prepared from peptide-functionalized PMLABe73 derivatives.
Collapse
Affiliation(s)
- Clarisse Brossard
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, 35000 Rennes, France; (C.B.); (L.J.); (V.D.)
| | - Manuel Vlach
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, 35000 Rennes, France; (M.V.); (E.V.)
- Institut Agro, INRAE, PEGASE, 35000 Rennes, France
| | - Lucas Jacquet
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, 35000 Rennes, France; (C.B.); (L.J.); (V.D.)
| | - Elise Vène
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, 35000 Rennes, France; (M.V.); (E.V.)
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35033 Rennes, France
| | - Vincent Dorcet
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, 35000 Rennes, France; (C.B.); (L.J.); (V.D.)
| | - Pascal Loyer
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, 35000 Rennes, France; (M.V.); (E.V.)
| | - Sandrine Cammas-Marion
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, 35000 Rennes, France; (C.B.); (L.J.); (V.D.)
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, 35000 Rennes, France; (M.V.); (E.V.)
| | - Nicolas Lepareur
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, 35000 Rennes, France; (M.V.); (E.V.)
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
| |
Collapse
|