1
|
Blind S, Lerouge L, Gries M, Retif P, Thomas N, Barberi-Heyob M, Daouk J. An alternate model to describe the radio-potentializing effects of metal-based nanoparticles in radiation therapy. Comput Biol Med 2025; 188:109861. [PMID: 39970825 DOI: 10.1016/j.compbiomed.2025.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND AND OBJECTIVES The use of numerical models to predict radiosensitizing properties induced by metal-based nanoparticles (NPs) remains a real challenge in oncology. As most of the interactions due to radiation in biological environments originate from the secondary particles produced, we aim to formalize the relationship between these secondary particles, the irradiation dose and the NP concentration, to optimize mathematical and numerical tools for assessing NP-induced radiosensitization. METHODS GATE simulations were carried out to demonstrate a linear and affine relationship between specific radiophysical quantities, the irradiation dose and NP concentration. This research has led to an effective new method for predicting radiophysical events and the proposal of a new model for predicting cell death. This model was confirmed by experimental biological results obtained from a clonogenic assay performed on U251 and U87 glioblastoma cells after exposure to different concentrations of metal-based NPs. RESULTS We achieved an efficient method for quantifying certain radiophysical species (number of ionizations, photo- and compton electrons, bremsstrahlung and deposited dose) in the presence of NPs and at different irradiation doses. These findings have enabled us to suggest an extension of the linear quadratic (LQ) cell survival model. The LQ extension model was compared with experimental data both obtained in the laboratory and extracted from the literature. CONCLUSIONS Radiophysical events provide valuable information for predicting the radiobiological and radiosensitizing effects of metal-based NPs in the context of X-ray photon irradiation. The extension of the LQ model we developed enables cell death to be predicted for different NP concentrations based on concentration effects alone.
Collapse
Affiliation(s)
- Sarah Blind
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Lucie Lerouge
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Mickaël Gries
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Paul Retif
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Department of Medical Physics, Mercy Hospital, CHR Metz-Thionville, F-57530 Ars-Laquenexy, France
| | - Noémie Thomas
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | | | - Joël Daouk
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| |
Collapse
|
2
|
Hu X, Hu J, Pang Y, Wang M, Zhou W, Xie X, Zhu C, Wang X, Sun X. Application of nano-radiosensitizers in non-small cell lung cancer. Front Oncol 2024; 14:1372780. [PMID: 38646428 PMCID: PMC11027897 DOI: 10.3389/fonc.2024.1372780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024] Open
Abstract
Radiotherapy stands as a cornerstone in the treatment of numerous malignant tumors, including non-small cell lung cancer. However, the critical challenge of amplifying the tumoricidal effectiveness of radiotherapy while minimizing collateral damage to healthy tissues remains an area of significant research interest. Radiosensitizers, by methods such as amplifying DNA damage and fostering the creation of free radicals, play a pivotal role in enhancing the destructive impact of radiotherapy on tumors. Over recent decades, nano-dimensional radiosensitizers have emerged as a notable advancement. Their mechanisms include cell cycle arrest in the G2/M phase, combating tumor hypoxia, and others, thereby enhancing the efficacy of radiotherapy. This review delves into the evolving landscape of nanomaterials used for radiosensitization in non-small cell lung cancer. It provides insights into the current research progress and critically examines the challenges and future prospects within this burgeoning field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Garcia-Prada CD, Carmes L, Atis S, Parach A, Bertolet A, Jarlier M, Poty S, Garcia DS, Shin WG, Du Manoir S, Schuemann J, Tillement O, Lux F, Constanzo J, Pouget JP. Gadolinium-Based Nanoparticles Sensitize Ovarian Peritoneal Carcinomatosis to Targeted Radionuclide Therapy. J Nucl Med 2023; 64:1956-1964. [PMID: 37857502 PMCID: PMC10690115 DOI: 10.2967/jnumed.123.265418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/28/2023] [Indexed: 10/21/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy (5-y overall survival rate, 46%). OC is generally detected when it has already spread to the peritoneal cavity (peritoneal carcinomatosis). This study investigated whether gadolinium-based nanoparticles (Gd-NPs) increase the efficacy of targeted radionuclide therapy using [177Lu]Lu-DOTA-trastuzumab (an antibody against human epidermal growth factor receptor 2). Gd-NPs have radiosensitizing effects in conventional external-beam radiotherapy and have been tested in clinical phase II trials. Methods: First, the optimal activity of [177Lu]Lu-DOTA-trastuzumab (10, 5, or 2.5 MBq) combined or not with 10 mg of Gd-NPs (single injection) was investigated in athymic mice bearing intraperitoneal OC cell (human epidermal growth factor receptor 2-positive) tumor xenografts. Next, the therapeutic efficacy and toxicity of 5 MBq of [177Lu]Lu-DOTA-trastuzumab with Gd-NPs (3 administration regimens) were evaluated. NaCl, trastuzumab plus Gd-NPs, and [177Lu]Lu-DOTA-trastuzumab alone were used as controls. Biodistribution and dosimetry were determined, and Monte Carlo simulation of energy deposits was performed. Lastly, Gd-NPs' subcellular localization and uptake, and the cytotoxic effects of the combination, were investigated in 3 cancer cell lines to obtain insights into the involved mechanisms. Results: The optimal [177Lu]Lu-DOTA-trastuzumab activity when combined with Gd-NPs was 5 MBq. Moreover, compared with [177Lu]Lu-DOTA-trastuzumab alone, the strongest therapeutic efficacy (tumor mass reduction) was obtained with 2 injections of 5 mg of Gd-NPs/d (separated by 6 h) at 24 and 72 h after injection of 5 MBq of [177Lu]Lu-DOTA-trastuzumab. In vitro experiments showed that Gd-NPs colocalized with lysosomes and that their radiosensitizing effect was mediated by oxidative stress and inhibited by deferiprone, an iron chelator. Exposure of Gd-NPs to 177Lu increased the Auger electron yield but not the absorbed dose. Conclusion: Targeted radionuclide therapy can be combined with Gd-NPs to increase the therapeutic effect and reduce the injected activities. As Gd-NPs are already used in the clinic, this combination could be a new therapeutic approach for patients with ovarian peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Clara Diaz Garcia-Prada
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Léna Carmes
- Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France
- NH TherAguix S.A., Meylan, France
| | - Salima Atis
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Ali Parach
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Alejandro Bertolet
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marta Jarlier
- Biometrics Unit, Montpellier Cancer Institute, University of Montpellier, Montpellier, France; and
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Daniel Suarez Garcia
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wook-Geun Shin
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stanislas Du Manoir
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Olivier Tillement
- Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - François Lux
- Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France;
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France;
| |
Collapse
|
4
|
Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. MATERIALS HORIZONS 2023; 10:4059-4082. [PMID: 37555747 PMCID: PMC10544071 DOI: 10.1039/d3mh00265a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Maren E Gerdes
- Karolinska Institutet, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
5
|
Ju Z, Xiang J, Xiao L, He Y, Zhang L, Wang Y, Lei R, Nie Y, Yang L, Miszczyk J, Zhou P, Huang R. TXNL4B regulates radioresistance by controlling the PRP3-mediated alternative splicing of FANCI. MedComm (Beijing) 2023; 4:e258. [PMID: 37168687 PMCID: PMC10165318 DOI: 10.1002/mco2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023] Open
Abstract
Ionizing radiation (IR) has been extensively used for cancer therapy, but the radioresistance hinders and undermines the radiotherapy efficacy in clinics greatly. Here, we reported that the spliceosomal protein thioredoxin-like 4B (TXNL4B) is highly expressed in lung tissues from lung cancer patients with radiotherapy. Lung cancer cells with TXNL4B knockdown illustrate increased sensitivity to IR. Mechanistically, TXNL4B interacts with RNA processing factor 3 (PRP3) and co-localizes in the nucleus post-IR. Nuclear localization of PRP3 promotes the alternative splicing of the Fanconi anemia group I protein (FANCI) transcript variants, FANCI-12 and FANCI-13. PRP3 regulates alternative splicing of FANCI toward the two variants, FANCI-12 and FANCI-13. Radioresistance was greatly enhanced through the combination of PRP31 and PRP8, the critical components of core spliceosome promoted by PRP3. Notably, the inhibition of PRP3 to suppress the production of FANCI-12 would deprive PRP31 and PRP8 of such interaction. As a result, cell cycle G2/M arrest was induced, DNA damage repair was delayed, and radiosensitivity was improved. Collectively, our study highlights potential novel underlying mechanisms of the involvement of TXNL4B and alternative splicing in radioresistance. The results would benefit potential cancer radiotherapy.
Collapse
Affiliation(s)
- Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation MedicineAMMSBeijingChina
| | - Jing Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation MedicineAMMSBeijingChina
| | - Liang Xiao
- Faculty of Naval MedicineNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Yan He
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Le Zhang
- Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Ridan Lei
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Yunfeng Nie
- Hunan Prevention and Treatment Institute for Occupational Diseases ChangshaChangshaHunanChina
| | - Long Yang
- Hunan Prevention and Treatment Institute for Occupational Diseases ChangshaChangshaHunanChina
| | - Justyna Miszczyk
- Department of Experimental Physics of Complex SystemsThe H. Niewodniczański Institute of Nuclear Physics, Polish Academy of SciencesKrakówPoland
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation MedicineAMMSBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
6
|
Smith L, Kuncic Z, Byrne HL, Waddington D. Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractThe development of nanoparticle agents for MRI-guided radiotherapy is growing at an increasing pace, with clinical trials now underway and many pre-clinical evaluation studies ongoing. Gadolinium and iron-oxide-based nanoparticles remain the most clinically advanced nanoparticles to date, although several promising candidates are currently under varying stages of development. Goals of current and future generation nanoparticle-based contrast agents for MRI-guided radiotherapy include achieving positive signal contrast on T1-weighted MRI scans, local radiation enhancement at clinically relevant concentrations and, where applicable, avoidance of uptake by the reticuloendothelial system. Exploiting the enhanced permeability and retention effect or the use of active targeting ligands on nanoparticle surfaces is utilised to promote tumour uptake. This review outlines the current status of promising nanoparticle agents for MRI-guided radiation therapy, including several platforms currently undergoing clinical evaluation or at various stages of the pre-clinical development process. Challenges facing nanoparticle agents and possible avenues for current and future development are discussed.
Collapse
|