1
|
Chen H, Nizard P, Decorse P, Nowak S, Ammar-Merah S, Pinson J, Gazeau F, Mangeney C, Luo Y. Dual-Mode Nanoprobes Based on Lanthanide Doped Fluoride Nanoparticles Functionalized by Aryl Diazonium Salts for Fluorescence and SERS Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305346. [PMID: 37875723 DOI: 10.1002/smll.202305346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Indexed: 10/26/2023]
Abstract
The design of dual-mode fluorescence and Raman tags stimulates a growing interest in biomedical imaging and sensing applications as they offer the possibility to synergistically combine the versatility and velocity of fluorescence imaging with the specificity of Raman spectroscopy. Although lanthanide-doped fluoride nanoparticles (NPs) are among the most studied fluorescent nanoprobes, their use for the development of bimodal fluorescent-Raman probes has never been reported yet, to the best of the authors knowledge, probably due to the difficulty to functionalize them with Raman reporter groups. This gap is filled herein by proposing a fast and straightforward approach based on aryl diazonium salt chemistry to functionalize Eu3+ or Tb3+ doped CaF2 and LaF3 NPs by Raman scatters. The resulting surface-enhanced Raman spectroscopy (SERS)-encoded lanthanide-doped fluoride NPs retain their fluorescence labeling capacity and display efficient SERS activity for cell bioimaging. The potential of this new generation of bimodal nanoprobes is assessed through cell viability assays and intracellular fluorescence and Raman imaging, opening up unprecedented opportunities for biomedical applications.
Collapse
Affiliation(s)
- Huan Chen
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
- Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes MSC, Paris, F-75006, France
| | - Philippe Nizard
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
- Structural and Molecular Analysis platform core facility of BioMedTech Facilities INSERM US36, CNRS UAR2009, Université Paris Cité, Paris, F-75006, France
| | | | - Sophie Nowak
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| | | | - Jean Pinson
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| | - Florence Gazeau
- Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes MSC, Paris, F-75006, France
| | - Claire Mangeney
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| | - Yun Luo
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| |
Collapse
|
2
|
Zhu H, Ding X, Wang C, Cao M, Yu B, Cong H, Shen Y. Preparation of rare earth-doped nano-fluorescent materials in the second near-infrared region and their application in biological imaging. J Mater Chem B 2024; 12:1947-1972. [PMID: 38299679 DOI: 10.1039/d3tb01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Second near-infrared (NIR-II) fluorescence imaging (FLI) has gained widespread interest in the biomedical field because of its advantages of high sensitivity and high penetration depth. In particular, rare earth-doped nanoprobes (RENPs) have shown completely different physical and chemical properties from macroscopic substances owing to their unique size and structure. This paper reviews the synthesis methods and types of RENPs for NIR-II imaging, focusing on new methods to enhance the luminous intensity of RENPs and multi-band imaging and multi-mode imaging of RENPs in biological applications. This review also presents an overview of the challenges and future development prospects based on RENPs in NIR-II regional bioimaging.
Collapse
Affiliation(s)
- Hetong Zhu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xin Ding
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
3
|
Yu Z, He Y, Schomann T, Wu K, Hao Y, Suidgeest E, Zhang H, Eich C, Cruz LJ. Correction: Yu et al. Achieving Effective Multimodal Imaging with Rare-Earth Ion-Doped CaF 2 Nanoparticles. Pharmaceutics 2022, 14, 840. Pharmaceutics 2024; 16:91. [PMID: 38258136 PMCID: PMC10820342 DOI: 10.3390/pharmaceutics16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
There was an error in the original publication [...].
Collapse
Affiliation(s)
- Zhenfeng Yu
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Y.); (Y.H.); (T.S.); (Y.H.)
| | - Yuanyuan He
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Y.); (Y.H.); (T.S.); (Y.H.)
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Y.); (Y.H.); (T.S.); (Y.H.)
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Kefan Wu
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (K.W.); (H.Z.)
| | - Yang Hao
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Y.); (Y.H.); (T.S.); (Y.H.)
| | - Ernst Suidgeest
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Hong Zhang
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (K.W.); (H.Z.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Y.); (Y.H.); (T.S.); (Y.H.)
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Y.); (Y.H.); (T.S.); (Y.H.)
| |
Collapse
|
4
|
Bauri S, Tripathi S, Choudhury AM, Mandal SS, Raj H, Maiti P. Nanomaterials as Theranostic Agents for Cancer Therapy. ACS APPLIED NANO MATERIALS 2023; 6:21462-21495. [DOI: 10.1021/acsanm.3c04235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Sudepta Bauri
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Swikriti Tripathi
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avishek Mallick Choudhury
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Subham Sekhar Mandal
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hans Raj
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
5
|
Wang L, Xie Y, Myrzagali S, Pu W, Liu E. Metal ions as effectual tools for cancer with traditional Chinese medicine. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:296-308. [DOI: 10.1097/hm9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Malignant tumor has become a major threat affecting human health, and is one of the main causes of human death. Recent studies have shown that many traditional Chinese medicines (TCM) have good anti-tumor activity, which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity. However, the efficacy of TCM alone for the treatment of tumors is limited. Metal ions are essential substances for maintaining normal physiological activities. This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sandugash Myrzagali
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Khorasani A, Shahbazi-Gahrouei D, Safari A. Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review. Diagnostics (Basel) 2023; 13:diagnostics13050833. [PMID: 36899980 PMCID: PMC10000685 DOI: 10.3390/diagnostics13050833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
In recent years, there has been an increasing interest in using nanoparticles in the medical sciences. Today, metal nanoparticles have many applications in medicine for tumor visualization, drug delivery, and early diagnosis, with different modalities such as X-ray imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), etc., and treatment with radiation. This paper reviews recent findings of recent metal nanotheranostics in medical imaging and therapy. The study offers some critical insights into using different types of metal nanoparticles in medicine for cancer detection and treatment purposes. The data of this review study were gathered from multiple scientific citation websites such as Google Scholar, PubMed, Scopus, and Web of Science up through the end of January 2023. In the literature, many metal nanoparticles are used for medical applications. However, due to their high abundance, low price, and high performance for visualization and treatment, nanoparticles such as gold, bismuth, tungsten, tantalum, ytterbium, gadolinium, silver, iron, platinum, and lead have been investigated in this review study. This paper has highlighted the importance of gold, gadolinium, and iron-based metal nanoparticles in different forms for tumor visualization and treatment in medical applications due to their ease of functionalization, low toxicity, and superior biocompatibility.
Collapse
Affiliation(s)
- Amir Khorasani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Correspondence: ; Tel.: +98-31-37929095
| | - Arash Safari
- Department of Radiology, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|
7
|
Taratula O, Taratula OR. Novel Nanoparticle-Based Treatment and Imaging Modalities. Pharmaceutics 2023; 15:244. [PMID: 36678873 PMCID: PMC9861272 DOI: 10.3390/pharmaceutics15010244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Over the last twenty years, nanomaterials have been widely used in cancer research [...].
Collapse
Affiliation(s)
- Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Olena R. Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| |
Collapse
|
8
|
Yu Z, He Y, Schomann T, Wu K, Hao Y, Suidgeest E, Zhang H, Eich C, Cruz LJ. Rare-Earth-Metal (Nd 3+, Ce 3+ and Gd 3+)-Doped CaF 2: Nanoparticles for Multimodal Imaging in Biomedical Applications. Pharmaceutics 2022; 14:2796. [PMID: 36559291 PMCID: PMC9784532 DOI: 10.3390/pharmaceutics14122796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Here, we describe the synthesis of a novel type of rare-earth-doped nanoparticles (NPs) for multimodal imaging, by combining the rare-earth elements Ce, Gd and Nd in a crystalline host lattice consisting of CaF2 (CaF2: Ce, Gd, Nd). CaF2: Ce, Gd, Nd NPs are small (15-20 nm), of uniform shape and size distribution, and show good biocompatibility and low immunogenicity in vitro. In addition, CaF2: Ce, Gd, Nd NPs possess excellent optical properties. CaF2: Ce, Gd, Nd NPs produce downconversion emissions in the second near-infrared window (NIR-II, 1000-1700 nm) under 808 nm excitation, with a strong emission peak at 1056 nm. Excitation in the first near- infrared window (NIR-I, 700-900 nm) has the advantage of deeper tissue penetration power and reduced autofluorescence, compared to visible light. Thus, CaF2: Ce, Gd, Nd NPs are ideally suited for in vivo fluorescence imaging. In addition, the presence of Gd3+ makes the NPs intrinsically monitorable by magnetic resonance imaging (MRI). Moreover, next to fluorescence and MR imaging, our results show that CaF2: Ce, Gd, Nd NPs can be used as imaging probes for photoacoustic imaging (PAI) in vitro. Therefore, due to their biocompatibility and suitability as multimodal imaging probes, CaF2: Ce, Gd, Nd NPs exhibit great potential as a traceable imaging agent in biomedical applications.
Collapse
Affiliation(s)
- Zhenfeng Yu
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Yuanyuan He
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Kefan Wu
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Yang Hao
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ernst Suidgeest
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Hong Zhang
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
9
|
Recent Progresses in NIR-II Luminescent Bio/Chemo Sensors Based on Lanthanide Nanocrystals. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fluorescent bio/chemosensors are widely used in the field of biological research and medical diagnosis, with the advantages of non-invasiveness, high sensitivity, and good selectivity. In particular, luminescent bio/chemosensors, based on lanthanide nanocrystals (LnNCs) with a second near-infrared (NIR-II) emission, have attracted much attention, owing to greater penetration depth, aside from the merits of narrow emission band, abundant emission lines, and long lifetimes. In this review, NIR-II LnNCs-based bio/chemo sensors are summarized from the perspectives of the mechanisms of NIR-II luminescence, synthesis method of LnNCs, strategy of luminescence enhancement, sensing mechanism, and targeted bio/chemo category. Finally, the problems that exist in present LnNCs-based bio/chemosensors are discussed, and the future development trend is prospected.
Collapse
|