1
|
Ergin AD, Bayindir ZS, Gumustas M, Ozcelikay AT, Yuksel N. A new strategy for enhancing S-Adenosyl-L-Methionine (SAMe) oral bioavailability: Preparation of SAMe loaded inulin nanoparticles for colon targeting with in vivo validation. Int J Biol Macromol 2025; 289:138818. [PMID: 39694359 DOI: 10.1016/j.ijbiomac.2024.138818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
S-Adenosylmethionine (SAMe) is a crucial endogenous molecule in vital biochemical processes such as DNA, RNA, and protein methylation. It has been found beneficial in the treatment of liver disease, osteoarthritis, and particularly depression. However, SAMe's therapeutic potential is limited by low bioavailability due to poor permeability and extensive liver metabolism. This study sought to improve SAMe's bioavailability by encapsulating it in inulin nanoparticles, utilizing a colon-targeted delivery system. Inulin, a prebiotic that promotes gut health by encouraging beneficial gut bacteria, is an ideal carrier for colon-specific drug delivery. Inulin nanoparticles were prepared using the desolvation method, incorporating sodium lauryl sulfate (SLS) for ion pairing with SAMe. The nanoparticles were spray-coated onto microcrystalline cellulose inert microspheres in a fluidized bed with Eudragit L30D-55 for colon-targeted release (Nanoparticle-In-Microparticles, NIMs). Pharmacokinetic studies in rats showed that encapsulating SAMe in inulin nanoparticles resulted in a significant three-fold increase in bioavailability compared to its pure form. This enhancement highlights the potential of inulin nanoparticles as an effective delivery system for SAMe, particularly in colon-targeted therapies.
Collapse
Affiliation(s)
- Ahmet Dogan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey.
| | - Zerrin Sezgin Bayindir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Mehmet Gumustas
- Ankara University, Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara, Turkey
| | - Arif Tanju Ozcelikay
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Nilufer Yuksel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| |
Collapse
|
2
|
Cordero-Clavijo LM, Mejía-Valdez D, Antunes-Ricardo M, Lazo-Vélez MA, Guajardo-Flores D. Evaluating sacha inchi (Plukenetia volubilis) oil stability and physicochemical properties: A comparison between conventional extraction and supercritical fluids. Food Chem 2025; 463:141132. [PMID: 39243616 DOI: 10.1016/j.foodchem.2024.141132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to compare the effects of two extraction techniques (conventional n-hexane and supercritical CO2) on the oil extraction yields, fatty acids profile, anti-hyaluronidase activity, oxidative stability, and in vitro bioactivities of oils from Sacha Inchi (Plukenetia volubilis). Higher oil extraction yield (99 %) was achieved using the SC-CO2, although similar fatty acids profiles were depicted between both treatments (p < 0.05). The SC-CO2 oil presented higher anti-hyaluronidase (31 %) activity, but lower oxidative stability (5.05 h) compared to the solvent extraction (10 %, and 5.3 h, respectively). In vitro assays further revealed that the best human normal colon cells (FHC) cell viability (100 %), anti-inflammatory (50 % lower NO production), and antioxidant (20 % ROS reduction) activities were consistently observed in both extraction treatments at concentrations of 50 μg/mL and higher. These findings highlight the potential of supercritical CO2 extraction in yielding Sacha Inchi oil with enhanced bioactive properties without the disadvantages of the use of organic solvents extraction.
Collapse
Affiliation(s)
- L Mateo Cordero-Clavijo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico; Universidad del Azuay, NutriOmics Research Group: Av. 24 de mayo 7-77 y Hernán Malo, Apartado 01.01.981, Cuenca, Ecuador
| | - Daniel Mejía-Valdez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico
| | - Marco A Lazo-Vélez
- Universidad del Azuay, NutriOmics Research Group: Av. 24 de mayo 7-77 y Hernán Malo, Apartado 01.01.981, Cuenca, Ecuador.
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
3
|
Cabrera‐Ramírez AH, Manríquez‐Medina M, Romero‐Robles LE, Chavez‐Santoscoy RA. Synthesis and evaluation of Maillard conjugates for encapsulation and controlled delivery of quercetin under simulated gastrointestinal tract conditions. Food Sci Nutr 2024; 12:6826-6840. [PMID: 39554356 PMCID: PMC11561787 DOI: 10.1002/fsn3.4329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 11/19/2024] Open
Abstract
Encapsulation of bioactive molecules for therapeutic use is gaining great interest in the scientific community. Several encapsulation methodologies have been evaluated, sacrificing, in some cases, either encapsulation efficiency or compound integrity. Our work developed Maillard conjugates (MCs) based on the whey protein (WP)-Maltodextrin (MD) interaction to encapsulate quercetin by freeze-drying. The WP:MD ratio used (1:2 or 1:3) yielded the formation of MCs, demonstrated by an increased browning index and changes in the protein secondary structure. Freeze-drying showed high encapsulation efficiency, reaching 87.65% and 84.72% in treatments loaded with 3.3 mg quercetin/g MCs. Quercetin-loaded MCs showed spherical-shape (4-10 μm) and a negative charge, suggesting colloidal stability. Moreover, in vitro tests demonstrated a sustained release of quercetin throughout the oral, gastric, and intestinal phases, highlighting the MCs efficacy as bioactive delivery systems. This work provides useful information to design bioactive compound delivery systems for food and pharmaceutical applications.
Collapse
|
4
|
Zhang Y, Zhu L, Zhao M, Jia Y, Li K, Li C. The effects of inulin on solubilizing and improving anti-obesity activity of high polymerization persimmon tannin. Int J Biol Macromol 2024; 270:132232. [PMID: 38734349 DOI: 10.1016/j.ijbiomac.2024.132232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Lin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Mengyao Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
5
|
Manzari‐Tavakoli A, Babajani A, Tavakoli MM, Safaeinejad F, Jafari A. Integrating natural compounds and nanoparticle-based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy. Cancer Med 2024; 13:e7010. [PMID: 38491817 PMCID: PMC10943377 DOI: 10.1002/cam4.7010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 03/18/2024] Open
Abstract
Cancer remains a leading cause of death worldwide, necessitating the development of innovative and more effective treatment strategies. Conventional cancer treatments often suffer from limitations such as systemic toxicity, poor pharmacokinetics, and drug resistance. Recently, there has been growing attention to utilizing natural compounds derived from various sources as possible cancer therapeutics. Natural compounds have demonstrated diverse bioactive properties, including antioxidant, anti-inflammatory, and antitumor effects, making them attractive candidates for cancer treatment. However, their limited solubility and bioavailability present challenges for effective delivery to cancer cells. To overcome these limitations, researchers have turned to nanotechnology-based drug delivery systems. Nanoparticles, with their small size and unique properties, can encapsulate therapeutic agents and offer benefits such as improved solubility, prolonged drug release, enhanced cellular uptake, and targeted delivery. Functionalizing nanoparticles with specific ligands further enhances their precision in recognizing and binding to cancer cells. Combining natural compounds with nanotechnology holds great promise in achieving efficient and safe cancer treatments by enhancing bioavailability, pharmacokinetics, and selectivity toward cancer cells. This review article provides an overview of the advancements in utilizing natural substances and nanotechnology-based drug delivery systems for cancer treatment. It discusses the benefits and drawbacks of various types of nanoparticles, as well as the characteristics of natural compounds that make them appealing for cancer therapy. Additionally, current research on natural substances and nanoparticles in preclinical and clinical settings is highlighted. Finally, the challenges and future perspectives in developing natural compound-nanoparticle-based cancer therapies are discussed.
Collapse
Affiliation(s)
| | - Amirhesam Babajani
- Oncopathology Research Center, Department of Molecular Medicine, School of MedicineIran University of Medical SciencesTehranIran
| | - Maryam Manzari Tavakoli
- Department of PhytochemistryMedicinal Plants and Drugs Research Institute, Shahid Beheshti UniversityTehranIran
| | - Fahimeh Safaeinejad
- Traditional Medicine and Materia Medica Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Ameneh Jafari
- Chronic Respiratory Diseases Research Center, NRITLDShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Quintriqueo-Cid A, Giménez B, Romero-Hasler P, Soto-Bustamante E, Lozano-Sánchez J, Robert P. Influence of the crystallinity on the physicochemical properties of spray-dried quercetin-inulin microparticles and their performance during in vitro digestion. Food Chem 2024; 434:137325. [PMID: 37696152 DOI: 10.1016/j.foodchem.2023.137325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Encapsulation of quercetin (Q) with inulin (In) by spray-drying was performed applying a Box-Behnken design where the effect of the inlet air temperature, percentage of inulin crystallite dispersion and Q content were studied on the crystallinity index (CI). Three microparticle systems with CI between 2 % and 20 % (Q-In-2 %, Q-In-12 % and Q-In-20 %) were selected to study the CI effect on Q release during an in vitro digestion. The higher the CI of microparticles, the higher the encapsulation efficiency (76.4 %, Q-In-20 %). Surface quercetin was steadily released during the oral, gastric, and intestinal phases of the digestion. The CI of the microparticles did not influence the Q bioaccessibility values (23.1-29.7 %). The highest Q delivery occurred during the simulated colonic phase (44.4-66.4 %) due to the action of the inulinase. The controlled crystallization in spray-dried microparticles is a promising strategy for the designing of polyphenol-based microparticles with specific delivery properties.
Collapse
Affiliation(s)
- Alejandra Quintriqueo-Cid
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia 81380494, Santiago, Chile; Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja 1807, Granada, Spain.
| | - Begoña Giménez
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Av. Victor Jara 3769, Estación Central 9170124, Santiago, Chile.
| | - Patricio Romero-Hasler
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia 81380494, Santiago, Chile.
| | - Eduardo Soto-Bustamante
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia 81380494, Santiago, Chile.
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja 1807, Granada, Spain.
| | - Paz Robert
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia 81380494, Santiago, Chile.
| |
Collapse
|
7
|
Akram W, Pandey V, Sharma R, Joshi R, Mishra N, Garud N, Haider T. Inulin: Unveiling its potential as a multifaceted biopolymer in prebiotics, drug delivery, and therapeutics. Int J Biol Macromol 2024; 259:129131. [PMID: 38181920 DOI: 10.1016/j.ijbiomac.2023.129131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
In recent years, inulin has gained much attention as a promising multifunctional natural biopolymer with numerous applications in drug delivery, prebiotics, and therapeutics. It reveals a multifaceted biopolymer with transformative implications by elucidating the intricate interplay between inulin and the host, microbiome, and therapeutic agents. Their flexible structure, exceptional targetability, biocompatibility, inherent ability to control release behavior, tunable degradation kinetics, and protective ability make them outstanding carriers in healthcare and biomedicine. USFDA has approved Inulin as a nutritional dietary supplement for infants. The possible applications of inulin in biomedicine research inspired by nature are presented. The therapeutic potential of inulin goes beyond its role in prebiotics and drug delivery. Recently, significant research efforts have been made towards inulin's anti-inflammatory, antioxidant, and immunomodulatory properties for their potential applications in treating various chronic diseases. Moreover, its ability to reduce inflammation and modulate immune responses opens new avenues for treating conditions such as autoimmune disorders and gastrointestinal ailments. This review will attempt to illustrate the inulin's numerous and interconnected roles, shedding light on its critical contributions to the advancement of healthcare and biomedicine and its recent advancement in therapeutics, and conclude by taking valuable insights into the prospects and opportunities of inulin.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Vikas Pandey
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Rajeev Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Ramakant Joshi
- Department of Pharmaceutics, ShriRam college of Pharmacy, Banmore 476444, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Navneet Garud
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior 474011, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India.
| |
Collapse
|
8
|
Ayala-Fuentes JC, Soleimani M, Magaña JJ, Gonzalez-Meljem JM, Chavez-Santoscoy RA. Novel Hybrid Inulin-Soy Protein Nanoparticles Simultaneously Loaded with (-)-Epicatechin and Quercetin and Their In Vitro Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101615. [PMID: 37242034 DOI: 10.3390/nano13101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
(-)-Epicatechin and quercetin have attracted considerable attention for their potential therapeutic application in non-communicable chronic diseases. A novel hybrid inulin-soy protein nanoparticle formulation was simultaneously loaded with (-)-epicatechin and quercetin (NEQs) to improve the bioavailability of these flavonoids in the human body, and NEQs were synthesized by spray drying. After process optimization, the physicochemical and functional properties of NEQs were characterized including in vitro release, in vitro gastrointestinal digestion, and cell viability assays. Results showed that NEQs are an average size of 280.17 ± 13.42 nm and have a zeta potential of -18.267 ± 0.83 mV in the organic phase. Encapsulation efficiency of (-)-epicatechin and quercetin reached 97.04 ± 0.01 and 92.05 ± 1.95%, respectively. A 3.5% soy protein content conferred controlled release characteristics to the delivery system. Furthermore, NEQs presented inhibitory effects in Caco-2, but not in HepG-2 and HDFa cell lines. These results contribute to the design and fabrication of inulin-soy protein nanoparticles for improving the bioavailability of multiple bioactive compounds with beneficial properties.
Collapse
Affiliation(s)
- Jocelyn C Ayala-Fuentes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Maryam Soleimani
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Jonathan Javier Magaña
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Mexico City 14380, Mexico
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | | | - Rocio Alejandra Chavez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| |
Collapse
|
9
|
Mendoza Villicana A, Gochi Ponce Y, Grande D, José Manuel CB, Zizumbo López A, González Joaquín MC, Chávez Santoscoy RA, Paz González JA, Bogdanchikova N, Pérez González GL, Villarreal-Gómez LJ. Evaluation of strategies to incorporate silver nanoparticles into electrospun microfibers for the preparation of wound dressings and their antimicrobial activity. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2181703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Anayanci Mendoza Villicana
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Yadira Gochi Ponce
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Daniel Grande
- Département Chimie Moléculaire et Matériaux Macromoléculaires (C3M), Institut de Chimie et des Matériaux Paris-Est, Paris, France
| | | | - Arturo Zizumbo López
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Marlon César González Joaquín
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | | | - Juan Antonio Paz González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotenología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, México
| | - Graciela Lizeth Pérez González
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| |
Collapse
|
10
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
11
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|