1
|
Singh A, Patel A, Chaudhary H, Yadav K, Minocha N. Nanotheranostics: The Fabrication of Theranostics with Nanoparticles and their Application to Treat the Neurological Disorders. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:17-34. [PMID: 37464820 DOI: 10.2174/1872210517666230718115651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Theranostics is a method that focuses on providing patient-centred care and is evolving as a targeted, safe, and effective pharmacotherapy. Nanotheranostics combines diagnosis and therapeutic modalities that bridge traditional treatment and personalised medicine. Theranostics provides novel ideas for nanotechnology. This review describes the current state of nanotechnology-based therapies used to treat neurological illnesses. Some patents on theranostics are also discussed in this review. OBJECTIVE This study aims to provide a more comprehensive review of the diagnosis and therapeutic properties of nanotheranostics, the present state of nanotechnology-based treatment of neurological disorders, and the future potential of theranostics. METHODS The phrase "theranostics" refers to a treatment strategy that integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. Theranostics is a crucial component of personalised medicine and calls for significant advancements in predictive medicine. The term "theranostics" refers to a diagnosis that screens patients for potential adverse drug reactions and targets drug delivery depending on the test results. Theranostics treats neurological disorders (like brain tumours (glioma), Parkinson's disease, Alzheimer's disease, and neurovascular diseases). Many review articles on Google Scholar, PubMed, Google Patents, and Scopus were used to gather information for this review. Data acquired from many sources was compiled in this review to provide more information on theranostics. RESULTS The role of various nanocarrier systems as theranostic agents for neurological illnesses and the fabrication of nanomaterials for theranostics are discussed in this article after evaluating a substantial number of review articles. CONCLUSION The distinctive intrinsic features of nanoparticles make them useful for functionalization and imaging. Theranostics in nuclear medicine include diagnostic imaging and therapy using the same molecule that is radiolabeled differently or the same medication at various doses. It is possible to determine if a patient will benefit from a given treatment by visualising potential targets. Targeted nuclear therapy has been shown to be beneficial in patients if chosen carefully and has a good safety profile.
Collapse
Affiliation(s)
- Astha Singh
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, 122013, India
| | - Aakriti Patel
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, 122013, India
| | - Hema Chaudhary
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, 122013, India
| | - Kiran Yadav
- Department of Pharmaceutical Sciences, Chandigarh College of Pharmacy, CGC, Landran, Mohali, 140307, India
| | - Neha Minocha
- Amity Institute of Pharmacy, Amity University, Gurgaon, 122412, Haryana, India
| |
Collapse
|
2
|
Panja S, Sharma M, Sharma H, Kumar A, Chandel V, Roy S, Biswas D. A comprehensive review on nanoparticle-based photo acoustic: current application and future prospective. DISCOVER NANO 2024; 19:214. [PMID: 39718756 DOI: 10.1186/s11671-024-04173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
In vivo, molecular imaging is prevalent for biology research and therapeutic practice. Among advanced imaging technologies, photoacoustic (PA) imaging and sensing is gaining interest around the globe due its exciting features like high resolution and good (~ few cm) penetration depth. PA imaging is a recent development in ultrasonic technology that generates acoustic waves by absorbing optical energy. However, poor light penetration through tissue continues to be the key obstacle in the field. The NPs as contrast agents can assist in overcoming tissue penetration depth as NPs can produce high signal to noise (SNR) PA signal which aids reconstruction of high resolution of the PA images in deep tissue sights. Subsequently, NPs are very effective in PA based targeted and precise theranostic applications. This article detail about various NPs (organic, inorganic and hybrid) used in PA imaging and spectroscopy applications including various disease diagnosis, therapy and theranostic. It also features optical property, advantages and limitations of various NPs utilised in PA techniques which would comprehend readers about the potential of NPs in evolving PA technique from laboratory to clinical modality in future.
Collapse
Affiliation(s)
- Sebika Panja
- Department of Biological Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Manish Sharma
- School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Harshika Sharma
- School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Abhishek Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, 491001, India
| | - Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Deblina Biswas
- Department of Instrumentation and Control Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, 144008, India.
| |
Collapse
|
3
|
Sorrentino C, Ciummo SL, Fieni C, Di Carlo E. Nanomedicine for cancer patient-centered care. MedComm (Beijing) 2024; 5:e767. [PMID: 39434967 PMCID: PMC11491554 DOI: 10.1002/mco2.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide, and an increase in incidence is estimated in the next future, due to population aging, which requires the development of highly tolerable and low-toxicity cancer treatment strategies. The use of nanotechnology to tailor treatments according to the genetic and immunophenotypic characteristics of a patient's tumor, and to allow its targeted release, can meet this need, improving the efficacy of treatment and minimizing side effects. Nanomedicine-based approach for the diagnosis and treatment of cancer is a rapidly evolving field. Several nanoformulations are currently in clinical trials, and some have been approved and marketed. However, their large-scale production and use are still hindered by an in-depth debate involving ethics, intellectual property, safety and health concerns, technical issues, and costs. Here, we survey the key approaches, with specific reference to organ-on chip technology, and cutting-edge tools, such as CRISPR/Cas9 genome editing, through which nanosystems can meet the needs for personalized diagnostics and therapy in cancer patients. An update is provided on the nanopharmaceuticals approved and marketed for cancer therapy and those currently undergoing clinical trials. Finally, we discuss the emerging avenues in the field and the challenges to be overcome for the transfer of nano-based precision oncology into clinical daily life.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| |
Collapse
|
4
|
Agarwal H, Bynum RC, Saleh N, Harris D, MacCuaig WM, Kim V, Sanderson EJ, Dennahy IS, Singh R, Behkam B, Gomez-Gutierrez JG, Jain A, Edil BH, McNally LR. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1983. [PMID: 39140128 PMCID: PMC11328968 DOI: 10.1002/wnan.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most recalcitrant cancers due to its late diagnosis, poor therapeutic response, and highly heterogeneous microenvironment. Nanotechnology has the potential to overcome some of the challenges to improve diagnostics and tumor-specific drug delivery but they have not been plausibly viable in clinical settings. The review focuses on active targeting strategies to enhance pancreatic tumor-specific uptake for nanoparticles. Additionally, this review highlights using actively targeted liposomes, micelles, gold nanoparticles, silica nanoparticles, and iron oxide nanoparticles to improve pancreatic tumor targeting. Active targeting of nanoparticles toward either differentially expressed receptors or PDAC tumor microenvironment (TME) using peptides, antibodies, small molecules, polysaccharides, and hormones has been presented. We focus on microenvironment-based hallmarks of PDAC and the potential for actively targeted nanoparticles to overcome the challenges presented in PDAC. It describes the use of nanoparticles as contrast agents for improved diagnosis and the delivery of chemotherapeutic agents that target various aspects within the TME of PDAC. Additionally, we review emerging nano-contrast agents detected using imaging-based technologies and the role of nanoparticles in energy-based treatments of PDAC. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Happy Agarwal
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Ryan C Bynum
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Nada Saleh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Danielle Harris
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - William M MacCuaig
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Vung Kim
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Emma J Sanderson
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Rohit Singh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Virginia, USA
| | | | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Huang Z, Wang Y, Su C, Li W, Wu M, Li W, Wu J, Xia Q, He H. Mn-Anti-CTLA4-CREKA-Sericin Nanotheragnostics for Enhanced Magnetic Resonance Imaging and Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306912. [PMID: 38009480 DOI: 10.1002/smll.202306912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/16/2023] [Indexed: 11/29/2023]
Abstract
The integration of magnetic resonance imaging (MRI), cGAS-STING, and anti-CTLA-4 (aCTLA-4) based immunotherapy offers new opportunities for tumor precision therapy. However, the precise delivery of aCTLA-4 and manganese (Mn), an activator of cGAS, to tumors remains a major challenge for enhanced MRI and active immunotherapy. Herein, a theragnostic nanosphere Mn-CREKA-aCTLA-4-SS (MCCS) is prepared by covalently assembling Mn2+, silk sericin (SS), pentapeptide CREKA, and aCTLA-4. MCCS are stable with an average size of 160 nm and is almost negatively charged or neutral at pH 5.5/7.4. T1-weighted images showed MCCS actively targeted tumors to improve the relaxation rate r1 and contrast time of MRI. This studies demonstrated MCCS raises reactive oxygen species levels, activates the cGAS-STING pathway, stimulates effectors CD8+ and CD80+ T cells, reduces regulatory T cell numbers, and increases IFN-γ and granzyme secretion, thereby inducing tumor cells autophagy and apoptosis in vitro and in vivo. Also, MCCS are biocompatible and biosafe. These studies show the great potential of Mn-/SS-based integrative material MCCS for precision and personalized tumor nanotheragnostics.
Collapse
Affiliation(s)
- Zixuan Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yejing Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| | - Can Su
- School of medical imaging, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Wanting Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Min Wu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Wuling Li
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jun Wu
- School of medical imaging, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| | - Huawei He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
6
|
Gupta D, Roy P, Sharma R, Kasana R, Rathore P, Gupta TK. Recent nanotheranostic approaches in cancer research. Clin Exp Med 2024; 24:8. [PMID: 38240834 PMCID: PMC10799106 DOI: 10.1007/s10238-023-01262-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024]
Abstract
Humanity is suffering from cancer which has become a root cause of untimely deaths of individuals around the globe in the recent past. Nanotheranostics integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. We hereby propose to discuss all recent cancer imaging and diagnostic tools, the mechanism of targeting tumor cells, and current nanotheranostic platforms available for cancer. This review discusses various nanotheranostic agents and novel molecular imaging tools like MRI, CT, PET, SPEC, and PAT used for cancer diagnostics. Emphasis is given to gold nanoparticles, silica, liposomes, dendrimers, and metal-based agents. We also highlight the mechanism of targeting the tumor cells, and the limitations of different nanotheranostic agents in the field of research for cancer treatment. Due to the complexity in this area, multifunctional and hybrid nanoparticles functionalized with targeted moieties or anti-cancer drugs show the best feature for theranostics that enables them to work on carrying and delivering active materials to the desired area of the requirement for early detection and diagnosis. Non-invasive imaging techniques have a specificity of receptor binding and internalization processes of the nanosystems within the cancer cells. Nanotheranostics may provide the appropriate medicine at the appropriate dose to the appropriate patient at the appropriate time.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Priyanka Roy
- Department of Chemistry, Jamia Hamdard University, New Delhi, 110062, India
| | - Rishabh Sharma
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Richa Kasana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Pragati Rathore
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Tejendra Kumar Gupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
7
|
Azizollahi F, Kamali H, Oroojalian F. Magnetic nanocarriers for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:349-401. [DOI: 10.1016/b978-0-443-18770-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Gupta U, Maity D, Sharma VK. Recent advances of polymeric nanoplatforms for cancer treatment: smart delivery systems (SDS), nanotheranostics and multidrug resistance (MDR) inhibition. Biomed Mater 2023; 19:012003. [PMID: 37944188 DOI: 10.1088/1748-605x/ad0b23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Nanotheranostics is a promising field that combines the benefits of diagnostic and treatment into a single nano-platform that not only administers treatment but also allows for real-time monitoring of therapeutic response, decreasing the possibility of under/over-drug dosing. Furthermore, developing smart delivery systems (SDSs) for cancer theranostics that can take advantage of various tumour microenvironment (TME) conditions (such as deformed tumour vasculature, various over-expressed receptor proteins, reduced pH, oxidative stress, and resulting elevated glutathione levels) can aid in achieving improved pharmacokinetics, higher tumour accumulation, enhanced antitumour efficacy, and/or decreased side effects and multidrug resistance (MDR) inhibition. Polymeric nanoparticles (PNPs) are being widely investigated in this regard due to their unique features such as small size, passive/active targeting possibility, better pharmaceutical kinetics and biological distribution, decreased adverse reactions of the established drugs, inherent inhibitory properties to MDR efflux pump proteins, as well as the feasibility of delivering numerous therapeutic substances in just one design. Hence in this review, we have primarily discussed PNPs based targeted and/or controlled SDSs in which we have elaborated upon different TME mediated nanotheranostic platforms (NTPs) including active/passive/magnetic targeting platforms along with pH/ROS/redox-responsive platforms. Besides, we have elucidated different imaging guided cancer therapeutic platforms based on four major cancer imaging techniques i.e., fluorescence/photo-acoustic/radionuclide/magnetic resonance imaging, Furthermore, we have deliberated some of the most recently developed PNPs based multimodal NTPs (by combining two or more imaging or therapy techniques on a single nanoplatform) in cancer theranostics. Moreover, we have provided a brief update on PNPs based NTP which are recently developed to overcome MDR for effective cancer treatment. Additionally, we have briefly discussed about the tissue biodistribution/tumour targeting efficiency of these nanoplatforms along with recent preclinical/clinical studies. Finally, we have elaborated on various limitations associated with PNPs based nanoplatforms.
Collapse
Affiliation(s)
- Urvashi Gupta
- Department of Bioengineering, Imperial College London, London SW7 2BX, United Kingdom
| | - Dipak Maity
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, United States of America
| |
Collapse
|
9
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
10
|
Han Z, MacCuaig WM, Gurcan MN, Claros-Sorto J, Garwe T, Henson C, Holter-Chakrabarty J, Hannafon B, Chandra V, Wellberg E, McNally LR. Dynamic 2-deoxy-D-glucose-enhanced multispectral optoacoustic tomography for assessing metabolism and vascular hemodynamics of breast cancer. PHOTOACOUSTICS 2023; 32:100531. [PMID: 37485041 PMCID: PMC10362308 DOI: 10.1016/j.pacs.2023.100531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
Clinical tools for measuring tumor vascular hemodynamics, such as dynamic contrast-enhanced MRI, are clinically important to assess tumor properties. Here we explored the use of multispectral optoacoustic tomography (MSOT), which has a high spatial and temporal resolution, to measure the intratumoral pharmacokinetics of a near-infrared-dye-labeled 2-Deoxyglucose, 2-DG-800, in orthotropic 2-LMP breast tumors in mice. As uptake of 2-DG-800 is dependent on both vascular properties, and glucose transporter activity - a widely-used surrogate for metabolism, we evaluate hemodynamics of 2-DG-MP by fitting the dynamic MSOT signal of 2-DG-800 into two-compartment models including the extended Tofts model (ETM) and reference region model (RRM). We showed that dynamic 2-DG-enhanced MSOT (DGE-MSOT) is powerful in acquiring hemodynamic rate constants, including Ktrans and Kep, via systemically injecting a low dose of 2-DG-800 (0.5 µmol/kg b.w.). In our study, both ETM and RRM are efficient in deriving hemodynamic parameters in the tumor. Area-under-curve (AUC) values (which correlate to metabolism), and Ktrans and Kep values, can effectively distinguish tumor from muscle. Hemodynamic parameters also demonstrated correlations to hemoglobin, oxyhemoglobin, and blood oxygen level (SO2) measurements by spectral unmixing of the MSOT data. Together, our study for the first time demonstrated the capability of DGE-MSOT in assessing vascular hemodynamics of tumors.
Collapse
Affiliation(s)
- Zheng Han
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Center for Health Systems Innovation, Oklahoma State University, Stillwater, OK 74078, USA
| | - William M. MacCuaig
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Bioengineering, University of Oklahoma, Norman, OK 73019, USA
| | - Metin N. Gurcan
- Center for Biomedical Informatics, Wake Forest Baptist Health, Winston-Salem, NC 27101, USA
| | - Juan Claros-Sorto
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Tabitha Garwe
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Christina Henson
- Department of Internal Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | | | - Bethany Hannafon
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Vishal Chandra
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Elizabeth Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Husarova T, MacCuaig WM, Dennahy IS, Sanderson EJ, Edil BH, Jain A, Bonds MM, McNally MW, Menclova K, Pudil J, Zaruba P, Pohnan R, Henson CE, Grizzle WE, McNally LR. Intraoperative Imaging in Hepatopancreatobiliary Surgery. Cancers (Basel) 2023; 15:3694. [PMID: 37509355 PMCID: PMC10377919 DOI: 10.3390/cancers15143694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatopancreatobiliary surgery belongs to one of the most complex fields of general surgery. An intricate and vital anatomy is accompanied by difficult distinctions of tumors from fibrosis and inflammation; the identification of precise tumor margins; or small, even disappearing, lesions on currently available imaging. The routine implementation of ultrasound use shifted the possibilities in the operating room, yet more precision is necessary to achieve negative resection margins. Modalities utilizing fluorescent-compatible dyes have proven their role in hepatopancreatobiliary surgery, although this is not yet a routine practice, as there are many limitations. Modalities, such as photoacoustic imaging or 3D holograms, are emerging but are mostly limited to preclinical settings. There is a need to identify and develop an ideal contrast agent capable of differentiating between malignant and benign tissue and to report on the prognostic benefits of implemented intraoperative imaging in order to navigate clinical translation. This review focuses on existing and developing imaging modalities for intraoperative use, tailored to the needs of hepatopancreatobiliary cancers. We will also cover the application of these imaging techniques to theranostics to achieve combined diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Tereza Husarova
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - William M. MacCuaig
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Isabel S. Dennahy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Emma J. Sanderson
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Barish H. Edil
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Morgan M. Bonds
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Katerina Menclova
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Jiri Pudil
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Pavel Zaruba
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Radek Pohnan
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Christina E. Henson
- Department of Radiation Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
12
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
13
|
Shmendel EV, Puchkov PA, Maslov MA. Design of Folate-Containing Liposomal Nucleic Acid Delivery Systems for Antitumor Therapy. Pharmaceutics 2023; 15:pharmaceutics15051400. [PMID: 37242642 DOI: 10.3390/pharmaceutics15051400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The delivery of therapeutic nucleic acids is a prospective method for the treatment of both inherited and acquired diseases including cancer. To achieve maximal delivery efficiency and selectivity, nucleic acids should be targeted to the cells of interest. In the case of cancer, such targeting may be provided through folate receptors overexpressed in many tumor cells. For this purpose, folic acid and its lipoconjugates are used. Compared to other targeting ligands, folic acid provides low immunogenicity, rapid tumor penetration, high affinity to a wide range of tumors, chemical stability, and easy production. Different delivery systems can utilize targeting by folate ligand including liposomal forms of anticancer drugs, viruses, and lipid and polymer nanoparticles. This review focuses on the liposomal gene delivery systems that provide targeted nucleic acid transport into tumor cells due to folate lipoconjugates. Moreover, important development step, such as rational design of lipoconjugates, folic acid content, size, and ζ-potential of lipoplexes are discussed.
Collapse
Affiliation(s)
- Elena V Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia
| | - Pavel A Puchkov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia
| | - Michael A Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia
| |
Collapse
|
14
|
Tan P, Chen X, Zhang H, Wei Q, Luo K. Artificial intelligence aids in development of nanomedicines for cancer management. Semin Cancer Biol 2023; 89:61-75. [PMID: 36682438 DOI: 10.1016/j.semcancer.2023.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Over the last decade, the nanomedicine has experienced unprecedented development in diagnosis and management of diseases. A number of nanomedicines have been approved in clinical use, which has demonstrated the potential value of clinical transition of nanotechnology-modified medicines from bench to bedside. The application of artificial intelligence (AI) in development of nanotechnology-based products could transform the healthcare sector by realizing acquisition and analysis of large datasets, and tailoring precision nanomedicines for cancer management. AI-enabled nanotechnology could improve the accuracy of molecular profiling and early diagnosis of patients, and optimize the design pipeline of nanomedicines by tuning the properties of nanomedicines, achieving effective drug synergy, and decreasing the nanotoxicity, thereby, enhancing the targetability, personalized dosing and treatment potency of nanomedicines. Herein, the advances in AI-enabled nanomedicines in cancer management are elaborated and their application in diagnosis, monitoring and therapy as well in precision medicine development is discussed.
Collapse
Affiliation(s)
- Ping Tan
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoting Chen
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Qiang Wei
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kui Luo
- Department of Urology, and Department of Radiology, Institute of Urology, and Huaxi MR Research Center (HMRRC), Animal Experimental Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Yuan L, Su Y, Yu B, Shen Y, Cong H. D-A-D organic small molecules with AIE effect for fluorescence imaging guided photothermal therapy. Biomater Sci 2023; 11:985-997. [PMID: 36541206 DOI: 10.1039/d2bm01912d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Near infrared (NIR) fluorescent organic molecules as fluorescent probes accurately guide photothermal therapy as a potential antitumor method. However, the aggregation and quenching of organic fluorescent molecules and poor tissue permeability greatly limit their therapeutic effect and clinical transformation. In this paper, with a D-A-D structure as the molecular skeleton, cyclopentadithiophene (CPDT) as the donor (D), diketopyrrolopyrrole (DPP) as the acceptor (A), and long-chain isooctane as the shielding unit, organic fluorescent small molecules with a strong absorption band and bright NIR-II emission were synthesized. Then, tetraphenylethylene (TPE) molecules with typical AIE structure characteristics were introduced on both sides of the organic fluorescent small molecules, and an organic small molecular fluorophore (TDA) with AIE characteristics and the photothermal effect was designed. Through a series of experimental characterization techniques, it is proved that TDA NPs have good biocompatibility and tissue permeability, and can accurately locate the tumor location through NIR-II fluorescence imaging to achieve local photothermal treatment of tumors.
Collapse
Affiliation(s)
- Lin Yuan
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Yingbin Su
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
16
|
Le HV, Le Cerf D. Colloidal Polyelectrolyte Complexes from Hyaluronic Acid: Preparation and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204283. [PMID: 36260830 DOI: 10.1002/smll.202204283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide which has been extensively exploited in biomedical fields owing to its outstanding biocompatibility. Self-assembly of HA and polycations through electrostatic interactions can generate colloidal polyelectrolyte complexes (PECs), which can offer a wide range of applications while being relatively simple to prepare with rapid and "green" processes. The advantages of colloidal HA-based PECs stem from the combined benefits of nanomedicine, green chemistry, and the inherent properties of HA, namely high biocompatibility, biodegradability, and biological targeting capability. Accordingly, colloidal PECs from HA have received increasing attention in the recent years as high-performance materials for biomedical applications. Considering their potential, this review is aimed to provide a comprehensive understanding of colloidal PECs from HA in complex with polycations, from the most fundamental aspects of the preparation process to their various biomedical applications, notably as nanocarriers for delivering small molecule drugs, nucleic acids, peptides, proteins, and bioimaging agents or the construction of multifunctional platforms.
Collapse
Affiliation(s)
- Huu Van Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| |
Collapse
|