1
|
Jiang Y, Cao Y, Yao Y, Zhang D, Wang Y. Chitosan and hyaluronic acid in breast cancer treatment: Anticancer efficacy and nanoparticle and hydrogel development. Int J Biol Macromol 2025; 301:140144. [PMID: 39848359 DOI: 10.1016/j.ijbiomac.2025.140144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The pervasive global health concern of breast cancer necessitates the development of innovative therapeutic interventions to enhance efficacy and mitigate adverse effects. Chitosan and hyaluronic acid, recognized for their biocompatibility and biodegradability, present compelling options for the novel drug delivery systems and therapeutic platforms in the context of breast cancer management. This review will delineate the distinctive attributes of chitosan and hyaluronic acid, encompassing their inherent anticancer properties, targeting capabilities, and suitability for chemical modifications along with nanoparticle development. These characteristics render them exceptionally well-suited for the fabrication of nanoparticles and hydrogels. The intrinsic anticancer potential of chitosan, in conjunction with its mucoadhesive properties, and the robust binding affinity of hyaluronic acid to CD44 receptors, facilitate specific drug delivery to the malignant cells, thus circumventing the limitations inherent in traditional treatment modalities such as chemotherapy. The incorporation of these materials into nanocarriers allows for the co-delivery of therapeutic agents, thereby potentiating synergistic effects, while hydrogel systems provide localized, controlled drug release and facilitate tissue regeneration. An analysis of advancements in their synthesis, functionalization, and application is presented, while also acknowledging challenges pertaining to scalability and clinical translation.
Collapse
Affiliation(s)
- Yanlin Jiang
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiqun Yao
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China
| | - Dianlong Zhang
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China.
| | - Yuying Wang
- Department of Breast Surgery, The Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, China.
| |
Collapse
|
2
|
Klg A, Priyadharshini B, Vasugi S, Dilipan E. Exploring the therapeutic potential of biosynthetic enzymes in cancer treatment: Innovations and implications. Int J Biol Macromol 2025; 292:139171. [PMID: 39732247 DOI: 10.1016/j.ijbiomac.2024.139171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Cancer remains a major global health concern due to several factors. These include the difficulty in accessing effective drugs, the high toxicity of available treatments, and the emergence of resistance to therapy. As a result, alternative strategies, such as the use of microbial enzymes, have gained attention as potential solutions to these challenges. Microbial enzymes have shown promise in inhibiting the uncontrolled growth of tumor cells through various mechanisms. In this comprehensive review, our objective is to emphasize the importance of pivotal microbial enzymes in fighting cancer and their ability to hinder the growth of tumors or cancer cells. The review article serves as a scientific roadmap for researchers, clinicians, and industry stakeholders exploring the therapeutic potential of biosynthetic enzymes in cancer treatment. It emphasizes the quest for effective and sustainable cancer therapies, presenting the possibility of personalized treatments with fewer side effects than traditional therapies.
Collapse
Affiliation(s)
- Afeeza Klg
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Boopathy Priyadharshini
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Suresh Vasugi
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Elangovan Dilipan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Yao Y, Zheng Y, Wu M, Gao Y, Yu Q, Liu M, Luo X, Wang R, Jiang L. CD133-targeted multifunctional nanomicelles for dual-modality imaging and synergistic high-intensity focus ultrasound (HIFU) ablation on pancreatic cancer in nude mice. J Mater Chem B 2024; 12:5884-5897. [PMID: 38775254 DOI: 10.1039/d4tb00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer is an aggressive and highly fatal malignant tumor. Recent studies have shown that cancer stem cells (CSCs) play an important role in resisting current therapeutic modalities. Furthermore, CD133 is highly expressed in CSCs. High-intensity focused ultrasound (HIFU) is a promising non-invasive therapeutic strategy for unresectable pancreatic cancers. In our study, we synthesized targeted CD133 organosilane nanomicelles by encapsulating perfluorohexane (PFH). The CD133 antibody on the surface could specifically bind to CD133-positive pancreatic cancer cells and selectively concentrate in pancreatic cancer tumor tissues. PFH was introduced to improve the ablation effect of HIFU due to its liquid-gas phase transition properties. By combining with the dorsal skinfold window chamber model (DSWC) of pancreatic cancer in nude mice, multiphoton fluorescence microscopy was used to evaluate the targeting effect of nanomicelles on pancreatic cancer tumor tissue. These multifunctional nanomicelles synergistically affected HIFU treatment of pancreatic cancer, providing an integrated research platform for diagnosing and treating pancreatic cancer with HIFU.
Collapse
Affiliation(s)
- Yijing Yao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yiwen Zheng
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Mingtai Wu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yihui Gao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Qian Yu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Mengyao Liu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Xiaoxiao Luo
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Rui Wang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
4
|
Barman D, Bandyopadhyay T, Talukdar R. Biosimilar in Breast Cancer: A Narrative Review. Cureus 2024; 16:e52828. [PMID: 38406112 PMCID: PMC10884361 DOI: 10.7759/cureus.52828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/27/2024] Open
Abstract
Breast cancer (BC) has been identified as a major public health cancer as it topped the list of most prevalent cancers among women in the last three years. Rigorous research has been conducted to improve the prognosis of cancer therapies since the time of inception. Recent advancements in cancer therapy have introduced monoclonal biosimilars as a promising treatment alternative. Monoclonal antibodies (mAbs), produced through cloning, have demonstrated effectiveness in targeting diverse antigens. Biosimilar, considered complex entities compared to small-molecule drugs, pose challenges in replication due to their biological nature. The manufacturing process involves rigorous comparability testing to ensure similarity in quality, safety, and efficacy with the reference product. Trastuzumab biosimilars, such as CT-P6, Ontruzant®, ABP 980, and PF-05280014, have shown efficacy in treating HER2-positive metastatic BCs, presenting a viable alternative to the reference product. The implications of monoclonal biosimilars extend beyond trastuzumab, with bevacizumab emerging as another significant biosimilar for BC treatment. The shift toward biosimilar aims to enhance accessibility to biologics by reducing costs. Health economic analyses indicate potential cost savings, contributing to the overall cost-effectiveness of biosimilar adoption. While concerns about switching between reference products and biosimilars exist, evidence suggests a lower risk of immunogenicity-related side effects with mAbs like trastuzumab. Monoclonal biosimilars present a promising avenue in BC therapy, demonstrating efficacy, safety, and potential cost savings. The integration of biosimilars into cancer treatment strategies offers a means to improve accessibility to effective care while addressing economic considerations in healthcare.
Collapse
Affiliation(s)
- Diplina Barman
- Epidemiology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, IND
| | - Tibar Bandyopadhyay
- Plastic and Reconstructive Surgery, Institute of Post-Graduate Medical Education and Research, Seth Sukhlal Karnani Memorial Hospital, Kolkata, IND
| | - Rounik Talukdar
- Epidemiology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, IND
| |
Collapse
|
5
|
Li T, Ashrafizadeh M, Shang Y, Nuri Ertas Y, Orive G. Chitosan-functionalized bioplatforms and hydrogels in breast cancer: immunotherapy, phototherapy and clinical perspectives. Drug Discov Today 2024; 29:103851. [PMID: 38092146 DOI: 10.1016/j.drudis.2023.103851] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Breast cancer is the most common and malignant tumor among women. Chitosan (CS)-based nanoparticles have been introduced into breast cancer therapy as a way to increase the targeted delivery of drugs and genes to the tumor site. CS nanostructures suppress tumorigenesis by enhancing both the targeted delivery of cargo (drug and gene) and its accumulation in tumor cells. The tumor cells internalize CS-based nanoparticles through endocytosis. Moreover, chitosan nanocarriers can also induce phototherapy-mediated tumor ablation. Smart and multifunctional types of CS nanoparticles, including pH-, light- and redox-responsive nanoparticles, can be used to improve the potential for breast cancer removal. In addition, the acceleration of immunotherapy by CS nanoparticles has also been achieved, and there is potential to develop CS-nanoparticle hydrogels that can be used to suppress tumorigenesis.
Collapse
Affiliation(s)
- Tianfeng Li
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, 518055, China; Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Yuru Shang
- Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology (UIRMI) (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain.
| |
Collapse
|
6
|
Saravanakumar K, Sathiyaseelan A, Zhang X, Choi M, Wang MH. Bimetallic (Ag and MgO) nanoparticles, Aloe vera extracts loaded xanthan gum nanocomposite for enhanced antibacterial and in-vitro wound healing activity. Int J Biol Macromol 2023; 242:124813. [PMID: 37172699 DOI: 10.1016/j.ijbiomac.2023.124813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
We prepared nanocomposite (XG-AVE-Ag/MgO NCs) using the bimetallic Ag/MgO NPs, Aloe vera extract (AVE), and biopolymer (Xanthan gum (XG)) to archive a synergetic antibacterial and wound healing activity. The changes in XRD peaks at 20° of XG-AVE-Ag/MgO NCs indicated the XG encapsulation. The XG-AVE-Ag/MgO NCs showed the zeta potential and zeta size of 151.3 ± 3.14 d·nm and -15.2 ± 1.08 mV with a PDI of 0.265 while TEM showed an average size of 61.19 ± 3.89. The EDS confirmed the co-existence of Ag, Mg, carbon, oxygen, and nitrogen in NCs. XG-AVE-Ag/MgO NCs displayed higher antibacterial activity in terms of zone of inhibition, at 15.00 ± 0.12 mm for B. cereus and 14.50 ± 0.85 mm for E. coli. Moreover, NCs exhibited MICs of 2.5 μg/mL for E. coli, and 0.62 μg/mL for B. cereus. The in vitro cytotoxicity and hemolysis assays indicated the non-toxic properties of XG-AVE-Ag/MgO NCs. The higher wound closure activity was observed with the treatment of XG-AVE-Ag/MgO NCs (91.19 ± 1.87 %) compared to the control, untreated group (68.68 ± 3.54 %) at 48 h of incubation. These findings revealed that XG-AVE-Ag/MgO NCs was promising non-toxic, antibacterial, and wound-healing agent that deserved further in-vivo studies.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Miri Choi
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
7
|
Picos-Corrales LA, Morales-Burgos AM, Ruelas-Leyva JP, Crini G, García-Armenta E, Jimenez-Lam SA, Ayón-Reyna LE, Rocha-Alonzo F, Calderón-Zamora L, Osuna-Martínez U, Calderón-Castro A, De-Paz-Arroyo G, Inzunza-Camacho LN. Chitosan as an Outstanding Polysaccharide Improving Health-Commodities of Humans and Environmental Protection. Polymers (Basel) 2023; 15:526. [PMID: 36771826 PMCID: PMC9920095 DOI: 10.3390/polym15030526] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Public health, production and preservation of food, development of environmentally friendly (cosmeto-)textiles and plastics, synthesis processes using green technology, and improvement of water quality, among other domains, can be controlled with the help of chitosan. It has been demonstrated that this biopolymer exhibits advantageous properties, such as biocompatibility, biodegradability, antimicrobial effect, mucoadhesive properties, film-forming capacity, elicitor of plant defenses, coagulant-flocculant ability, synergistic effect and adjuvant along with other substances and materials. In part, its versatility is attributed to the presence of ionizable and reactive primary amino groups that provide strong chemical interactions with small inorganic and organic substances, macromolecules, ions, and cell membranes/walls. Hence, chitosan has been used either to create new materials or to modify the properties of conventional materials applied on an industrial scale. Considering the relevance of strategic topics around the world, this review integrates recent studies and key background information constructed by different researchers designing chitosan-based materials with potential applications in the aforementioned concerns.
Collapse
Affiliation(s)
- Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ana M. Morales-Burgos
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Jose P. Ruelas-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Grégorio Crini
- Laboratoire Chrono-Environnement, UMR 6249, UFR Sciences et Techniques, Université de Franche-Comté, 16 Route de Gray, 25000 Besançon, France
| | - Evangelina García-Armenta
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Sergio A. Jimenez-Lam
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Lidia E. Ayón-Reyna
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Fernando Rocha-Alonzo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Loranda Calderón-Zamora
- Facultad de Biología, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ulises Osuna-Martínez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Abraham Calderón-Castro
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Gonzalo De-Paz-Arroyo
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Levy N. Inzunza-Camacho
- Unidad Académica Preparatoria Hermanos Flores Magón, Universidad Autónoma de Sinaloa, Culiacán 80000, Sinaloa, Mexico
| |
Collapse
|
8
|
Ekinci M, dos Santos CC, Alencar LM, Akbaba H, Santos-Oliveira R, Ilem-Ozdemir D. Atezolizumab-Conjugated Poly(lactic acid)/Poly(vinyl alcohol) Nanoparticles as Pharmaceutical Part Candidates for Radiopharmaceuticals. ACS OMEGA 2022; 7:47956-47966. [PMID: 36591122 PMCID: PMC9798736 DOI: 10.1021/acsomega.2c05834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The necessity of new drugs for lung cancer therapy and imaging is increasing each day. The development of new drugs that are capable of reaching the tumor with specificity and selectivity is required. In this direction, the design of nanoparticles for tumor therapy represents an important alternative. The aim of this study was to develop, characterize, and evaluate target-specific atezolizumab-conjugated poly(lactic acid)/poly(vinyl alcohol) (PLA/PVA) nanoparticles as pharmaceutical fragment candidates for new radiopharmaceuticals. For this purpose, PLA/PVA nanoparticle formulations were prepared by the double emulsification/solvent evaporation method with a high-speed homogenizer. A special focus was oriented to the selection of a suitable method for modification of the nanoparticle surface with a monoclonal antibody. For this purpose, atezolizumab was bound to the nanoparticles during the preparation by solvent evaporation or either by adsorption or covalent binding. PLA/PVA/atezolizumab nanoparticles are characterized by dynamic light scattering, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. An in vitro assay was performed to evaluate the antibody binding efficiency, stability, and cytotoxicity [A549 (lung cancer cell) and L929 (healthy fibroblast cell)]. The results showed that a spherical nanoparticle with a size of 230.6 ± 1.768 nm and a ζ potential of -2.23 ± 0.55 mV was produced. Raman spectroscopy demonstrated that the monoclonal antibody was entrapped in the nanoparticle. The high antibody binding efficiency (80.58%) demonstrated the efficacy of the nanosystem. The cytotoxic assay demonstrated the safety of the nanoparticle in L929 and the effect on A549. In conclusion, PLA/PVA/atezolizumab nanoparticles can be used as drug delivery systems for lung cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Meliha Ekinci
- Faculty of Pharmacy,
Department of Radiopharmacy, Ege University, Bornova, 35040 Izmir, Turkiye
| | | | | | - Hasan Akbaba
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Bornova, Izmir 35040, Turkiye
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Laboratory of Synthesis
of Novel Radiopharmaceuticals and Nanoradiopharmacy, Brazilian Nuclear Energy Commission, Rio de Janeiro 222901-901, Brazil
- Laboratory of Nanoradiopharmaceuticals
and Radiopharmacy, State University of Rio
de Janeiro, Rio de Janeiro 20550-013, Brazil
| | - Derya Ilem-Ozdemir
- Faculty of Pharmacy,
Department of Radiopharmacy, Ege University, Bornova, 35040 Izmir, Turkiye
| |
Collapse
|
9
|
Saravanakumar K, Sathiyaseelan A, Zhang X, Park S, Wang MH. Purinoceptor Targeted Cytotoxicity of Adenosine Triphosphate-Conjugated Biogenic Selenium Nanoparticles in Human Colon Cancer Cells. Pharmaceuticals (Basel) 2022; 15:582. [PMID: 35631408 PMCID: PMC9143145 DOI: 10.3390/ph15050582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The adenosine triphosphate (ATP)-conjugated biogenic selenium nanoparticles (SeNPs) for P2 (purinoceptors) receptor-targeted anti-colon cancer activity were developed in this study. First, the SeNPs were synthesized using Trichoderma extracts (TE) and then conjugated with ATP to enhance their anticancer activity. The developed SeNPs had an oval crystalline structure with an average diameter size of 26.45 ± 1.71 d. nm, while the ATP-SeNPs were 78.6 ± 2.91 d. nm. The SeNPs contain Se, and less persistence of P while the ATP-SeNPs have high level of P, and Se in the energy-dispersive spectroscopy (EDS). Further, both nanoparticles exhibited larger sizes in the dynamic light scattering (DLS) analysis than in the transmission electron microscopy (TEM) analysis. The DLS and Fourier transform infrared spectroscopy (FTIR) results provide evidence that the amine group (-NH2) of ATP might bind with the negatively charged SeNPs through covalent bonding. The IC50 concentration was 17.25 ± 1.16 µg/mL for ATP-SeNPs and 61.24 ± 2.08 µg/mL against the caco-2 cell line. The IC50 results evidenced the higher cytotoxicity of ATP-SeNPs in the caco-2 cell line than in HEK293 cells. ATP-SeNPs trigger the anticancer activity in the caco-2 cell line through the induction of mitochondrial membrane potential (MMP) loss and nucleus damage. The biocompatibility test of hemolysis and the egg CAM assay confirmed the non-toxicity of these nanoparticles. Overall, the results proved that the newly developed ATP-SeNPs exhibited higher cytotoxicity in the caco-2 cell line than SeNPs. However, further molecular and in vivo experiments are required to develop the ATP-SeNPs as a candidate drug for cancer-targeted therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (X.Z.); (S.P.)
| |
Collapse
|