1
|
Kushwaha P, Usmani S, Sufiyan M, Singh P. Innovating alopecia treatment: nanostructured lipid carriers as advanced delivery platforms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03784-x. [PMID: 39825967 DOI: 10.1007/s00210-025-03784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025]
Abstract
Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release. This manuscript explores the potential of Nanostructured lipid carriers as innovative delivery platforms for alopecia therapeutics, focusing on their formulation, characterization, and application in topical treatments. The unique properties of Nanostructured lipid carriers, including their small size, biocompatibility, and ability to target specific skin layers, are discussed in relation to improving the penetration and therapeutic efficacy of active ingredients such as minoxidil, finasteride, and plant-derived compounds. Additionally, we highlight the role of Nanostructured lipid carriers in improving scalp penetration, reducing side effects, and offering a more efficient alternative to conventional treatments. The manuscript concludes with insights into future trends, challenges, and the clinical potential of Nanostructured lipid carriers-based formulations in revolutionizing alopecia treatment.
Collapse
Affiliation(s)
- Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Mohd Sufiyan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Priyanka Singh
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
2
|
Xiao C, Zhang GH, Li HQ, Yang PP, Zhang HB, Mu YX. Meta-Analysis of Efficacy of Platelet-Rich Plasma Combined with Minoxidil for Androgenetic Alopecia. Aesthetic Plast Surg 2024; 48:4554-4566. [PMID: 38789807 DOI: 10.1007/s00266-024-04054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Androgenetic alopecia (AGA) is a prevalent type of hair loss that impacts individuals of both genders. Platelet-rich plasma (PRP) and minoxidil have been employed as therapeutic interventions for AGA, yet the efficacy of their concurrent use remains ambiguous. OBJECTIVE To perform a comprehensive review and meta-analysis aimed at evaluating the effectiveness of platelet-rich plasma (PRP) in combination with minoxidil for the treatment of androgenetic alopecia (AGA). METHODS We conducted a comprehensive search of the databases PubMed, Embase, Web of Science, and Cochrane Library, encompassing their complete records up until December 2023. Eligible studies were randomized controlled trials that compared the combination of PRP and minoxidil with minoxidil or PRP alone in patients with AGA. The primary outcome measure was the change in hair growth as assessed by the hair density or hair thickness. Secondary outcome measures included patient satisfaction, and global photographic assessment. RESULTS A total of 6 studies involving 343 participants were included in this meta-analysis. The results showed that PRP combined with minoxidil significantly improved hair growth compared to minoxidil or PRP alone. The pooled analysis demonstrated a significant increase in hair density (weighted mean difference [WMD] = 9.14; 95% confidence interval [CI]: 6.57-11.70) and hair diameter (WMD = 4.72; 95% CI 3.21-6.23) in the PRP combined with minoxidil group. Moreover, patients receiving PRP combined with minoxidil reported higher satisfaction rates compared to those using minoxidil or PRP alone. CONCLUSIONS This meta-analysis suggests that PRP combined with minoxidil is an effective treatment for AGA, providing significant improvement in hair growth and patient satisfaction. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Chuan Xiao
- Binzhou Medical University Hospital, Binzhou City, Shandong Province, China
| | - Guo-Hui Zhang
- Department of Plastic Surgery, Binzhou Medical University Hospital, Binzhou City, Shandong Province, China.
| | - Hai-Qi Li
- Binzhou Medical University Hospital, Binzhou City, Shandong Province, China
| | - Peng-Peng Yang
- Department of Plastic Surgery, Binzhou Medical University Hospital, Binzhou City, Shandong Province, China
| | - Hai-Bo Zhang
- Department of Plastic Surgery, Binzhou Medical University Hospital, Binzhou City, Shandong Province, China
| | - Yue-Xiao Mu
- Department of Plastic Surgery, Binzhou Medical University Hospital, Binzhou City, Shandong Province, China
| |
Collapse
|
3
|
Safta DA, Bogdan C, Moldovan ML. SLNs and NLCs for Skin Applications: Enhancing the Bioavailability of Natural Bioactives. Pharmaceutics 2024; 16:1270. [PMID: 39458602 PMCID: PMC11510141 DOI: 10.3390/pharmaceutics16101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Natural bioactives are mixtures of compounds extracted from plants with physicochemical properties that are usually not favorable for penetrating the skin's complex barrier. Nanoparticles have important advantages both in dermatology and cosmetology: improved solubility and stability of encapsulated phytocompounds, controlled and sustained skin delivery, and enhanced skin permeation, leading to an improved bioavailability. This review focuses on two generations of lipid-based nanoparticles: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). An extensive overview on the recent studies on SLNs and NLCs entrapping essential oils, oils, herbal extracts, and phytocompounds for topical applications is presented, emphasizing their composition, physicochemical characterization, efficacy, and methodologies used to evaluate them. This review also summarizes topical systems containing natural bioactives incorporated into SLNs and NLCs, commercially available products and registered patents in the field. SLNs and NLCs turn out to be effective nanocarriers for skin applications, offering significantly improved encapsulation efficiency, stability, and bioactives delivery. However, their full potential is underexplored. Future applications should study the encapsulation potential of new natural bioactives and show more specialized solutions that address specific requirements; an improved product performance and a pleasant sensory profile could lead to increased customer compliance with the product use.
Collapse
Affiliation(s)
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.A.S.); (M.-L.M.)
| | | |
Collapse
|
4
|
Li L, Ma Q, Luo W, Ji J, Zhang X, Hong D. High-frequency ultrasonography of the scalp: A comparison between androgenetic alopecia and healthy volunteers. Skin Res Technol 2024; 30:e13863. [PMID: 39081105 PMCID: PMC11289427 DOI: 10.1111/srt.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/21/2024] [Indexed: 08/03/2024]
Abstract
OBJECTIVE This study aimed to assess differences in various scalp parameters between patients with androgenetic alopecia (AGA) and healthy volunteers using 22 MHz ultrasound. METHODS Thirty patients with AGA (AGA group) and 30 healthy volunteers (control group) who visited the Department of Dermatology at the Second Affiliated Hospital of Soochow University from September 2021 to June 2022 were randomly selected. The patients with AGA met the diagnostic criteria outlined in the Chinese Guidelines for the Diagnosis and Treatment of Androgenetic Alopecia. The severity of alopecia was assessed for males between grades 2 and 4 on the Norwood-Hamilton scale, and for females between stages 2 and 3 on the Ludwig scale. No artificial interventions were conducted at the vertex, and all examination conditions remained consistent. Ultrasound examinations at 22 MHz were performed on the scalp at the vertex in both the AGA and control groups. Seven parameters were measured, namely, epidermis + dermis thickness, entire scalp thickness, subcutaneous tissue thickness, average follicle width, average follicle length, follicle count, and the presence of color flow signals in the subcutaneous tissue. The differences in these parameters were then compared. RESULTS The AGA group showed reduced thickness of the entire scalp and subcutaneous tissue, narrower average follicle width, shorter average follicle length, lower hair follicle count, and fewer instances of color flow signals in the subcutaneous tissue at the vertex area (p < 0.05). CONCLUSION High-frequency (22 MHz) ultrasonography can be employed to visualize the entrance echo, dermis, subcutaneous tissue, and hair follicles of the scalp, thereby providing imaging for the clinical assessment of hair loss.
Collapse
Affiliation(s)
- Lin Li
- Department of UltrasoundAffiliated Wuxi Fifth Hospital of Jiangnan University (The Fifth People's Hospital of Wuxi)WuxiChina
| | - Qi Ma
- Department of UltrasoundThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Weifeng Luo
- Department of NeurologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jiang Ji
- Department of DermatologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaoyan Zhang
- Department of DermatologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Dongken Hong
- Department of UltrasoundThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
5
|
Zhang H, Han M, Nie X, Fu X, Hong K, He D. Production of Camellia oleifera Abel Seed Oil for Injection: Extraction, Analysis, Deacidification, Decolorization, and Deodorization. Foods 2024; 13:1430. [PMID: 38790730 PMCID: PMC11120317 DOI: 10.3390/foods13101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Camellia seed oil (CSO), as a nutrient-rich edible oil, is widely used in foods, cosmetics, and other fields. In this work, the extraction, deacidification, decolorization, and deodorization processes of CSO were respectively optimized for meeting injectable oil standards. The results showed that the CSO extraction rate reached the highest level of 94% at optimized conditions (ultrasonic time, 31.2 min; reaction pH, 9.2; and reaction time, 3.5 h). The physicochemical indexes of CSO and 10 other vegetable oils were evaluated by the principal component analysis method, and the overall scores of vegetable oils were ranked as camellia seed oil > olive oil > rice oil > peanut oil > sesame oil > corn oil > soybean oil > sunflower oil > rapeseed oil > walnut oil > flaxseed oil. The physicochemical indicators of CSO were the most ideal among the 11 vegetable oils, which means that CSO is suitable as an injectable oil. Through the optimized processes of the deacidification, decolorization, and deodorization, the CSO acid value was reduced to 0.0515 mg KOH/g, the decolorization rate reached a maximum of 93.86%, and the OD430 was 0.015, meeting the requirement (≤0.045 of OD430) of injectable oil. After the deodorization process, these parameters of the refractive index, acid value, saponification value, iodine value, absorbance, unsaponifiable, moisture and volatiles, fatty acid composition, and heavy metal limits all met the pharmacopoeia standards of injectable oil in many countries and regions. The possibility of CSO as an injectable oil was first verified through refining-process optimization and nutritional index analysis, providing an important technical reference for the high-value utilization of vegetable oil.
Collapse
Affiliation(s)
- Han Zhang
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
| | - Mei Han
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
| | - Xuejiao Nie
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
| | - Xiaomeng Fu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Kunqiang Hong
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
| | - Dongping He
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
| |
Collapse
|
6
|
Han S, Ke M, Wang L, Ma H, Wu G, Zhu L, Zhang T, Lu H. Identification of dynamic changes in volatile compounds and metabolites during the smoking process of Zhenba bacon by GC-IMS combined metabolomics. Food Res Int 2024; 182:114197. [PMID: 38519166 DOI: 10.1016/j.foodres.2024.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Zhenba bacon is a traditional cured bacon product with a rich history that originated from Zhenba County, Shaanxi Province. This study aimed to investigate the patterns of volatile compound formation and changes in metabolites during the smoking process in Zhenba bacon. Firstly, the sensory properties and physicochemical properties of Zhenba bacon were analyzed. Gas chromatography-ion mobility spectrometry (GC-IMS) and nontargeted metabolomics technology were used to analyze Zhenba bacon from different smoking stages. The results show a gradual increase in the sensory acceptance and volatile flavor compounds such as aldehydes, ketones, and esters with the prolongation of smoking of Zhenba bacon. LC-MS analysis identified 191 co-expressed differentially metabolites, with amino acid and lipid metabolism being the main metabolic pathways according to KEGG enrichment analysis. Temporal expression analysis of bacon metabolites at each stage revealed a decrease in harmful steroid hormones such as cortisone and an increase in amino acids and lipid metabolites, such as arginine, lysine, acid, and cholesterol, that contribute to the flavor of bacon. In summary, duration of smoking increased, the amount of flavor substances in Zhenba bacon gradually increased, and the safety and quality of bacon reached the optimal level after 32 days of smoking. This study provides valuable insights into the dynamic changes in volatile flavor compounds in Zhenba bacon and establishes a theoretical foundation for quality control during its production.
Collapse
Affiliation(s)
- Shuai Han
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Meiling Ke
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China; Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, Shaanxi, China
| | - Haidong Ma
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China; Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, Shaanxi, China
| | - Guofei Wu
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China; Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China
| | - Lianxu Zhu
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China; Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China; Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, Shaanxi, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China; Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, Shaanxi, China.
| |
Collapse
|