1
|
Dash SK, Benival D, Jindal AB. Formulation Strategies to Overcome Amphotericin B Induced Toxicity. Mol Pharm 2024; 21:5392-5412. [PMID: 39373243 DOI: 10.1021/acs.molpharmaceut.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fungal infection poses a major global threat to public health because of its wide prevalence, severe mortality rate, challenges involved in diagnosis and treatment, and the emergence of drug-resistant fungal strains. Millions of people are getting affected by fungal infection, and around 3.8 million people face death per year due to fungal infection, as per the latest report. The polyene antibiotic AmB has an extensive record of use as a therapeutic moiety against systemic fungal infection and leishmaniasis since 1960. AmB has broad-spectrum fungistatic and fungicidal activity. AmB exerts its therapeutic activity at the cellular level by binding to fungal sterol and forming hydrophilic pores, releasing essential cellular components and ions into the extracellular fluid, leading to cell death. Despite using AmB as an antifungal and antileishmanial at a broad scale, its clinical use is limited due to drug-induced nephrotoxicity resulting from binding the aggregated form of the drug to mammalian sterol. To mitigate AmB-induced toxicity and to get better anti-fungal therapeutic outcomes, researchers have developed nanoformulations, self-assembled formulations, prodrugs, cholesterol- and albumin-based AmB formulations, AmB-mAb combination therapy, and AmB cochleates. These formulations have helped to reduce toxicity to a certain extent by controlling the aggregation state of AmB, providing sustained drug release, and altering the physicochemical and pharmacokinetic parameters of AmB. Although the preclinical outcome of AmB formulations is quite satisfactory, its parallel result at the clinical level is insignificant. However, the safety and efficacy of AmB therapy can be improved at the clinical stage by continuous investigation and collaboration among researchers, clinicians, and pharmaceutical companies.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar, Gujurat 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
2
|
Jain VK, Jain K, Popli H. Conjugates of amphotericin B to resolve challenges associated with its delivery. Expert Opin Drug Deliv 2024; 21:187-210. [PMID: 38243810 DOI: 10.1080/17425247.2024.2308073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Amphotericin B (AmB), a promising antifungal and antileishmanial drug, acts on the membrane of microorganisms. The clinical use of AmB is limited due to issues associated with its delivery including poor solubility and bioavailability, instability in acidic media, poor intestinal permeability, dose and aggregation state dependent toxicity, parenteral administration, and requirement of cold chain for transport and storage, etc. AREAS COVERED Scientists have formulated and explored various covalent conjugates of AmB to reduce its toxicity with increase in solubility, oral bioavailability, and payload or loading of AmB by using various polymers, lipids, carbon-based nanocarriers, metallic nanoparticles, and vesicular carriers, etc. In this article, we have reviewed various conjugates of AmB with polymers and nanomaterials explored for its delivery to give a deep insight regarding further exploration in future. EXPERT OPINION Covalent conjugates of AmB have been investigated by scientists, and preliminary in vitro and animal investigations have given successful results, which are required to be validated further with systematic investigation on safety and therapeutic efficacy in animals followed by clinical trials.
Collapse
Affiliation(s)
- Vineet Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
3
|
Sharifi N, Alitaneh Z, Asadi S, Vahidinia Z, Aghaei Zarch SM, Esmaeili A, Bagheri-Mohammadi S, Najafi S, Mazhari Y. Developing nanosize carrier systems for Amphotericin-B: A review on the biomedical application of nanoparticles for the treatment of leishmaniasis and fungal infections. Biotechnol J 2024; 19:e2300462. [PMID: 38073122 DOI: 10.1002/biot.202300462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
New formulations of Amphotericin-B (Am-B), the most popular therapeutic drug for many human infections such as parasitic and fungal pathogens, are safe, economical, and effective in the world. Several newly designed carrier systems for Am-B can also be considered orally with sufficient gastrointestinal permeability and good solubility. However, the clinical application of several new formulations of Am-B with organ cytotoxicity, low bioavailability, high costs, and technical problems have caused some issues. Therefore, more attention and scientific design are required to progress safe and effective drug delivery systems. Currently, the application of nano-based technology and nanomaterials in the advancement of drug delivery systems exhibits promising outcomes to cure many human systemic infections. Designing novel drug delivery systems including solid lipid nanostructured materials, lipo-polymersomes, drug conjugates and microneedles, liposomes, polymer and protein-based nanostructured materials, dendrimers, emulsions, mixed micelles, polymeric micelles, cyclodextrins, nanocapsules, and nanocochleate for Am-B has many advantages to reducing several related issues. The unique properties of nanostructured particles such as proper morphology, small size, surface coatings, and, electrical charge, permit scientists to design new nanocomposite materials against microorganisms for application in various human diseases. These features have made these nanoparticles an ideal candidate for drug delivery systems in clinical approaches to cure a number of human disorders and currently, several therapeutic nanostructured material formulations are under different stages of clinical tests. Hence, this scientific paper mainly discussed the advances in new formulations of Am-B for the treatment of human systemic infections and related clinical tests.
Collapse
Affiliation(s)
- Neda Sharifi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zahra Alitaneh
- Quantitative and System Biology, Department of Natural Sciences, University of California Merced, USA
| | - Sahar Asadi
- Department of Community and Family Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yosra Mazhari
- Department of Microbiology and Infectious Diseases Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhong X, Yang J, Liu H, Yang Z, Luo P. Potential lipid-based strategies of amphotericin B designed for oral administration in clinical application. Drug Deliv 2023; 30:2161671. [PMID: 36601799 PMCID: PMC9828648 DOI: 10.1080/10717544.2022.2161671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Amphotericin B (AmB) is regarded as a first-line therapy against life-threatening invasive fungal infections. Due to its poor oral bioavailability, AmB is restricted to intravenous administration in clinical practice. As science continues to move forward, two lipid-based formulations are successfully developed for oral AmB administration, currently undergoing phase I clinical trials. Encouragingly, lipid-AmB conjugates with emulsions also exhibit a better bioavailability, which may be another strategy to design oral AmB formulation in clinical practice. Thus, this review mainly focused on the two lipid-based formulations in clinical trials, and discussed the potential perspectives of AmB-lipid conjugation-loaded nanocochleates and emulsions.
Collapse
Affiliation(s)
- Xiaoming Zhong
- Department of Oncology Radiotherapy, Jiangxi Cancer Hospital, Nanchang, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China;
| | - Hongyan Liu
- Department of Pharmacy, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Zhiwen Yang
- Department of Pharmacy, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Ping Luo
- Department of Breast surgery, Nanchang Third Hospital, Nanchang, China,CONTACT Ping Luo Department of Breast surgery, Nanchang Third Hospital, Nanchang, China
| |
Collapse
|
5
|
Soe HMSH, Junthip J, Chamni S, Chansriniyom C, Limpikirati P, Thanusuwannasak T, Asasutjarit R, Pruksakorn P, Autthateinchai R, Wet-Osot S, Loftsson T, Jansook P. A promising synthetic citric crosslinked β-cyclodextrin derivative for antifungal drugs: Solubilization, cytotoxicity, and antifungal activity. Int J Pharm 2023; 645:123394. [PMID: 37689255 DOI: 10.1016/j.ijpharm.2023.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Effective antifungal therapy for the treatment of fungal keratitis requires a high drug concentration at the corneal surface. However, the use of natural β-cyclodextrin (βCD) in the preparation of aqueous eye drop formulations for treating fungal keratitis is limited by its low aqueous solubility. Here, we synthesized water-soluble anionic βCD derivatives capable of forming water-soluble complexes and evaluated the solubility, cytotoxicity, and antifungal efficacy of drug prepared using the βCD derivative. To achieve this, a citric acid crosslinked βCD (polyCTR-βCD) was successfully synthesized, and the aqueous solubilities of selected antifungal drugs, including voriconazole, miconazole (MCZ), itraconazole, and amphotericin B, in polyCTR-βCD and analogous βCD solutions were evaluated. Among the drugs tested, complexation of MCZ with polyCTR-βCD (MCZ/polyCTR-βCD) increased MCZ aqueous solubility by 95-fold compared with that of MCZ/βCD. The inclusion complex formation of MCZ/βCD and MCZ/polyCTR-βCD was confirmed by spectroscopic techniques. Additionally, the nanoaggregates of saturated MCZ/polyCTR-βCD and MCZ/βCD solutions were observed using dynamic light scattering and transmission electron microscopy. Moreover, MCZ/polyCTR-βCD solution exhibited good mucoadhesion, sustained drug release, and high drug permeation of porcine cornea ex vivo. Hen's Egg test-chorioallantoic membrane assay and cell viability study using Statens Seruminstitut Rabbit Cornea cell line showed that both MCZ/polyCTR-βCD and MCZ/βCD exhibited no sign of irritation and non-toxic to cell line. Additionally, antifungal activity evaluation demonstrated that all isolated fungi, including Candida albicans, Aspergillus flavus, and Fusarium solani, were susceptible to MCZ/polyCTR-βCD. Overall, the results showed that polyCTR-βCD could be a promising nanocarrier for the ocular delivery of MCZ.
Collapse
Affiliation(s)
- Hay Man Saung Hnin Soe
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Supakarn Chamni
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaisak Chansriniyom
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patanachai Limpikirati
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Rathapon Asasutjarit
- Faculty of Pharmacy, Thammasat University, Klong Luang, Rangsit, Pathum Thani 12120, Thailand
| | - Patamaporn Pruksakorn
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Rinrapas Autthateinchai
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Sirawit Wet-Osot
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Roussaki M, Magoulas GE, Fotopoulou T, Santarem N, Barrias E, Pöhner I, Luelmo S, Afroudakis P, Georgikopoulou K, Nevado PT, Eick J, Bifeld E, Corral MJ, Jiménez-Antón MD, Ellinger B, Kuzikov M, Fragiadaki I, Scoulica E, Gul S, Clos J, Prousis KC, Torrado JJ, Alunda JM, Wade RC, de Souza W, Cordeiro da Silva A, Calogeropoulou T. Design, synthesis and biological evaluation of antiparasitic dinitroaniline-ether phospholipid hybrids. Bioorg Chem 2023; 138:106615. [PMID: 37244229 DOI: 10.1016/j.bioorg.2023.106615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 μM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.
Collapse
Affiliation(s)
- Marina Roussaki
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - George E Magoulas
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Theano Fotopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Nuno Santarem
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Parasite Disease Group, Porto, Portugal.
| | - Emile Barrias
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil.
| | - Ina Pöhner
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Sara Luelmo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Pantelis Afroudakis
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Kalliopi Georgikopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Paloma Tejera Nevado
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - Julia Eick
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - Eugenia Bifeld
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - María J Corral
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - María Dolores Jiménez-Antón
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany.
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany.
| | - Irini Fragiadaki
- University of Crete, Faculty of Medicine, Department of Clinical Microbiology and Microbial Pathogenesis, Voutes University Campus, 70013 Heraklion, Crete, Greece.
| | - Effie Scoulica
- University of Crete, Faculty of Medicine, Department of Clinical Microbiology and Microbial Pathogenesis, Voutes University Campus, 70013 Heraklion, Crete, Greece.
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany.
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Leishmania Genetics Group, Bernhard Nocht St 74, D-20359 Hamburg, Germany.
| | - Kyriakos C Prousis
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Juan J Torrado
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28240 Madrid, Spain.
| | - José María Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany; Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, D-69120 Heidelberg, Germany.
| | - Wanderley de Souza
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil.
| | - Anabela Cordeiro da Silva
- IBMC-Instituto de Biologia Molecular e Celular, Parasite Disease Group, Porto, Portugal; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Departmento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Theodora Calogeropoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
7
|
Coelho LD, Souza MMD, Cassali GD, Silva RA, Paiva MJN, Barros ALB, Teixeira EM, Silveira JN, Coelho PMZ, Aguiar MMG, Oliveira MC. Emetic Tartar-Loaded Liposomes as a New Strategy for Leishmaniasis Treatment. Pharmaceutics 2023; 15:pharmaceutics15030904. [PMID: 36986765 PMCID: PMC10056186 DOI: 10.3390/pharmaceutics15030904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Emetic tartar (ET), was used in the treatment of leishmaniasis but its use was discontinued due to its low therapeutic index. Liposomes have been shown to be a promising strategy for delivery of bioactive substances in the region of interest, in order to reduce and/or eliminate undesirable effects. In the present study, liposomes containing ET were prepared and characterized to evaluate acute toxicity as well as their leishmanicidal action using BALB/c mice with an inoculum of Leishmania (Leishmania) infantum. Liposomes were composed of egg phosphatidylcholine and 3ß-[N-(N′,N′-dimethylaminoethane)-carbamoyl]cholesterol, with an average diameter of 200 nm, zeta potential of +18 mV, and ET encapsulated into liposomes at a concentration near 2 g/L. Healthy mice were treated with ET or liposome containing ET (Lip-ET) in a single dose of 16 mg/kg of Sb3+ intravenously and observed for 14 days. The death of two animals in the ET-treated group and no deaths in the Lip-ET-treated group was observed. Higher hepatic and cardiac toxicity were observed in animals treated with ET when compared to animals treated with Lip-ET, blank liposomes (Blank-Lip) and PBS. The study of antileishmanial efficacy was conducted by intraperitoneal administration of Lip-ET, for ten consecutive days. It was observed by limiting dilution that treatments with liposomal formulations containing ET, as well as Glucantime®, led to a significant reduction in parasitic load in spleen and liver (p < 0.05) when compared to the untreated control group.
Collapse
Affiliation(s)
- Larissa D. Coelho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mirna M. D. Souza
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Geovanni D. Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Raphaela A. Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Maria J. N. Paiva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - André L. B. Barros
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Eliane M. Teixeira
- Clinical Research and Public Policy Group on Infectious and Parasitic Diseases, René Rachou Institute, Fundação Oswaldo Cruz—FIOCRUZ, Belo Horizonte 30190-009, MG, Brazil
| | - Josianne N. Silveira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Paulo M. Z. Coelho
- Rene Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte 30190-009, MG, Brazil
| | - Marta M. G. Aguiar
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: (M.M.G.A.); or (M.C.O.); Tel.: +55-31-3409-6942 (M.M.G.A.); +55-31-3409-6945 (M.C.O.)
| | - Mônica C. Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: (M.M.G.A.); or (M.C.O.); Tel.: +55-31-3409-6942 (M.M.G.A.); +55-31-3409-6945 (M.C.O.)
| |
Collapse
|
8
|
Knight CA, Harris DR, Alshammari SO, Gugssa A, Young T, Lee CM. Leishmaniasis: Recent epidemiological studies in the Middle East. Front Microbiol 2023; 13:1052478. [PMID: 36817103 PMCID: PMC9932337 DOI: 10.3389/fmicb.2022.1052478] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
Leishmaniasis, one of the most neglected tropical diseases (NTDs), is the third most important vector-borne disease worldwide. This disease has a global impact and severity of the infection and is greatest in the Middle East. The agent of infection is a protozoan parasite of the genus, Leishmania, and is generally transmitted by blood-sucking female sandflies. In humans, there are three clinical forms of infection: (1) cutaneous (CL), (2) mucocutaneous (ML), and (3) visceral leishmaniasis (VL). This review aims to discuss the current epidemiological status of leishmaniasis in Saudi Arabia, Iraq, Syria, and Yemen with a consideration of treatment options. The elevated risk of leishmaniasis is influenced by the transmission of the disease across endemic countries into neighboring non-infected regions.
Collapse
Affiliation(s)
| | - David R. Harris
- Department of Biology, Tuskegee University, Tuskegee, AL, United States
| | | | - Ayele Gugssa
- Department of Biology, Howard University, Washington, DC, United States
| | - Todd Young
- Department of Biology, Howard University, Washington, DC, United States
| | - Clarence M. Lee
- Department of Biology, Howard University, Washington, DC, United States
| |
Collapse
|
9
|
Gopu B, Kour P, Pandian R, Singh K. Insights into the drug screening approaches in leishmaniasis. Int Immunopharmacol 2023; 114:109591. [PMID: 36700771 DOI: 10.1016/j.intimp.2022.109591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis, a tropically neglected disease, is responsible for the high mortality and morbidity ratio in poverty-stricken areas. Currently, no vaccine is available for the complete cure of the disease. Current chemotherapeutic regimens face the limitations of drug resistance and toxicity concerns indicating a great need to develop better chemotherapeutic leads that are orally administrable, potent, non-toxic, and cost-effective. The anti-leishmanial drug discovery process accelerated the desire for large-scale drug screening assays and high-throughput screening (HTS) technology to identify new chemo-types that can be used as potential drug molecules to control infection. Using the HTS approach, about one million compounds can be screened daily within the shortest possible time for biological activity using automation tools, miniaturized assay formats, and large-scale data analysis. Classical and modern in vitro screening assays have led to the progression of active compounds further to ex vivo and in vivo studies. In the present review, we emphasized on the HTS approaches employed in the leishmanial drug discovery program. Recent in vitro screening assays are widely explored to discover new chemical scaffolds. Developing appropriate experimental animal models and their related techniques is necessary to understand the pathophysiological processes and disease host responses, paving the way for unraveling novel therapies against leishmaniasis.
Collapse
Affiliation(s)
- Boobalan Gopu
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Parampreet Kour
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ramajayan Pandian
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Frézard F, Aguiar MMG, Ferreira LAM, Ramos GS, Santos TT, Borges GSM, Vallejos VMR, De Morais HLO. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2022; 15:pharmaceutics15010099. [PMID: 36678729 PMCID: PMC9864876 DOI: 10.3390/pharmaceutics15010099] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The liposomal amphotericin B (AmB) formulation, AmBisome®, still represents the best therapeutic option for cutaneous and visceral leishmaniasis. However, its clinical efficacy depends on the patient's immunological status, the clinical manifestation and the endemic region. Moreover, the need for parenteral administration, its side effects and high cost significantly limit its use in developing countries. This review reports the progress achieved thus far toward the understanding of the mechanism responsible for the reduced toxicity of liposomal AmB formulations and the factors that influence their efficacy against leishmaniasis. It also presents the recent advances in the development of more effective liposomal AmB formulations, including topical and oral liposome formulations. The critical role of the AmB aggregation state and release rate in the reduction of drug toxicity and in the drug efficacy by non-invasive routes is emphasized. This paper is expected to guide future research and development of innovative liposomal formulations of AmB.
Collapse
Affiliation(s)
- Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-34092940
| | - Marta M. G. Aguiar
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas A. M. Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thais T. Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel S. M. Borges
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Helane L. O. De Morais
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
11
|
Kumar P, Kumar P, Singh N, Khajuria S, Patel R, Rajana VK, Mandal D, Velayutham R. Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review. Front Bioeng Biotechnol 2022; 10:1016925. [PMID: 36588956 PMCID: PMC9794769 DOI: 10.3389/fbioe.2022.1016925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most lethal of all leishmaniasis diseasesand the second most common parasiticdisease after malaria and,still, categorized as a neglected tropical disease (NTD). According to the latest WHO study, >20 Leishmania species spread 0.7-1.0 million new cases of leishmaniasis each year. VL is caused by the genus, Leishmania donovani (LD), which affects between 50,000 and 90,000 people worldwide each year. Lack of new drug development, increasing drug resistance, toxicity and high cost even with the first line of treatmentof Amphotericin B (AmB), demands new formulation for treatment of VLFurther the lack of a vaccine, allowedthe researchers to develop nanofomulation-based AmB for improved delivery. The limitation of AmB is its kidney and liver toxicity which forced the development of costly liposomal AmB (AmBisome) nanoformulation. Success of AmBisome have inspired and attracted a wide range of AmB nanoformulations ranging from polymeric, solid lipid, liposomal/micellar, metallic, macrophage receptor-targetednanoparticles (NP) and even with sophisticated carbon/quantum dot-based AmBnano delivery systems. Notably, NP-based AmB delivery has shown increased efficacy due to increased uptake, on-target delivery and synergistic impact of NP and AmB. In this review, we have discussed the different forms of leishmaniasis disease and their current treatment options with limitations. The discovery, mechanism of action of AmB, clinical status of AmB and improvement with AmBisome over fungizone (AmB-deoxycholate)for VL treatment was further discussed. At last, the development of various AmB nanoformulation was discussed along with its adavantages over traditional chemotherapy-based delivery.
Collapse
Affiliation(s)
- Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Pawan Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Nidhi Singh
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Salil Khajuria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Rahul Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| | - Ravichandiran Velayutham
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,National Institute of Pharmaceutical Education and Research, Kolkata, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| |
Collapse
|
12
|
Kuznetsova DA, Gaynanova GA, Vasilieva EA, Pavlov RV, Zueva IV, Babaev VM, Kuznetsov DM, Voloshina AD, Petrov KA, Zakharova LY, Sinyashin OG. Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning. Pharmaceutics 2022; 14:pharmaceutics14091950. [PMID: 36145698 PMCID: PMC9506492 DOI: 10.3390/pharmaceutics14091950] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
One of the main problems in the treatment of poisoning with organophosphorus (OPs) inhibitors of acetylcholinesterase (AChE) is low ability of existing reactivators of AChE that are used as antidotes to cross the blood-brain barrier (BBB). In this work, modified cationic liposomes were developed that can penetrate through the BBB and deliver the reactivator of AChE pralidoxime chloride (2-PAM) into the brain. Liposomes were obtained on the basis of phosphatidylcholine and imidazolium surfactants. To obtain the composition optimized in terms of charge, stability, and toxicity, the molar ratio of surfactant/lipid was varied. For the systems, physicochemical parameters, release profiles of the substrates (rhodamine B, 2-PAM), hemolytic activity and ability to cause hemagglutination were evaluated. Screening of liposome penetration through the BBB, analysis of 2-PAM pharmacokinetics, and in vivo AChE reactivation showed that modified liposomes readily pass into the brain and reactivate brain AChE in rats poisoned with paraoxon (POX) by 25%. For the first time, an assessment was made of the ability of imidazolium liposomes loaded with 2-PAM to reduce the death of neurons in the brains of mice. It was shown that intravenous administration of liposomal 2-PAM can significantly reduce POX-induced neuronal death in the hippocampus.
Collapse
|
13
|
Mansur-Alves I, Lima BLF, Santos TT, Araújo NF, Frézard F, Islam A, de Barros AL, Dos Santos DC, Fernandes C, Ferreira LA, Aguiar MM. Cholesterol improves stability of amphotericin B nanoemulsion: promising use in the treatment of cutaneous leishmaniasis. Nanomedicine (Lond) 2022; 17:1237-1251. [PMID: 36189757 DOI: 10.2217/nnm-2021-0489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Amphotericin B (AmB) is an antileishmanial drug with high toxicity; however, this drawback might overcome by decreasing the AmB self-aggregation state. This work aimed at evaluating the influence of cholesterol on the aggregation state of AmB loaded in a nanoemulsion (NE-AmB) for the treatment of cutaneous leishmaniasis. NE-AmB (1, 4 and 8 mg/kg/day) was administered intravenously to animals infected by Leishmania major every 2 days for a total of five injections. Results: Ultraviolet-visible spectroscopy and circular dichroism studies demonstrated that cholesterol reduced AmB aggregation state in NE. NE-AmB was stable after 180 days, and its hemolytic toxicity was lower than that observed for the conventional AmB. NE-AmB administered intravenously into animals infected by Leishmania major at 8 mg/kg was capable of stabilizing the lesion size and reducing the parasitic load. Conclusion: These findings support the NE potential as a stable nanocarrier for AmB in the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Izabela Mansur-Alves
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Brenda Lorrayne Furtado Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Thais Tunes Santos
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Naialy F Araújo
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Frédéric Frézard
- Department of Physiology & Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Arshad Islam
- Department of Pathology, Government Lady Reading Hospital, Medical Teaching Institution, Peshawar, 25100, Pakistan
| | - André Lb de Barros
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Délia Cm Dos Santos
- Department of Pharmacy & Nutrition, Center for Exact, Natural & Health Sciences, Federal University of Espírito Santo, Alto Universitario, Alegre, Espírito Santo, 29500-000, Brazil
| | - Christian Fernandes
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Lucas Am Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Marta Mg Aguiar
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| |
Collapse
|