1
|
Pastukhov AI, Savinov MS, Zelepukin IV, Babkova JS, Tikhonowski GV, Popov AA, Klimentov SM, Devi A, Patra A, Zavestovskaya IN, Deyev SM, Kabashin AV. Laser-synthesized plasmonic HfN-based nanoparticles as a novel multifunctional agent for photothermal therapy. NANOSCALE 2024; 16:17893-17907. [PMID: 39253754 DOI: 10.1039/d4nr02311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hafnium nitride nanoparticles (HfN NPs) can offer appealing plasmonic properties at the nanoscale, but the fabrication of stable water-dispersible solutions of non-toxic HfN NPs exhibiting plasmonic features in the window of relative biological transparency presents a great challenge. Here, we demonstrate a solution to this problem by employing ultrashort (femtosecond) laser ablation from a HfN target in organic solutions, followed by a coating of the formed NPs with polyethylene glycol (PEG) and subsequent dispersion in water. We show that the fabricated NPs exhibit plasmonic absorption bands with maxima around 590 nm, 620 nm, and 650 nm, depending on the synthesis environment (ethanol, acetone, and acetonitrile, respectively), which are largely red-shifted compared to what is expected from pure HfN NPs. The observed shift is explained by including nitrogen-deficient hafnium nitride and hafnium oxynitride phases inside the core and oxynitride coating of NPs, as follows from a series of structural characterization studies. We then show that the NPs can provide a strong photothermal effect under 808 nm excitation with a photothermal conversion coefficient of about 62%, which is comparable to the best values reported for plasmonic NPs. MTT and clonogenic assays evidenced very low cytotoxicity of PEG-coated HfN NPs to cancer cells from different tissues up to 100 μg mL-1 concentrations. We finally report a strong photothermal therapeutic effect of HfN NPs, as shown by 100% cell death under 808 nm light irradiation at NP concentrations lower than 25 μg mL-1. Combined with additional X-ray theranostic functionalities (CT scan and photon capture therapy) profiting from the high atomic number (Z = 72) of Hf, plasmonic HfN NPs promise the development of synergetically enhanced modalities for cancer treatment.
Collapse
Affiliation(s)
- A I Pastukhov
- Aix-Marseille University, CNRS, LP3, 13288, Marseille, France.
| | - M S Savinov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - I V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
- Uppsala University, Department of Medicinal Chemistry, 75310, Uppsala, Sweden
| | - J S Babkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
| | - G V Tikhonowski
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - A A Popov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - S M Klimentov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - A Devi
- Institute of Nano Science and Technology, Mohali, 140306, India
| | - A Patra
- Institute of Nano Science and Technology, Mohali, 140306, India
| | - I N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - S M Deyev
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - A V Kabashin
- Aix-Marseille University, CNRS, LP3, 13288, Marseille, France.
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| |
Collapse
|
2
|
Ruhoff V, Arastoo MR, Moreno-Pescador G, Bendix PM. Biological Applications of Thermoplasmonics. NANO LETTERS 2024; 24:777-789. [PMID: 38183300 PMCID: PMC10811673 DOI: 10.1021/acs.nanolett.3c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Thermoplasmonics has emerged as an extraordinarily versatile tool with profound applications across various biological domains ranging from medical science to cell biology and biophysics. The key feature of nanoscale plasmonic heating involves remote activation of heating by applying laser irradiation to plasmonic nanostructures that are designed to optimally convert light into heat. This unique capability paves the way for a diverse array of applications, facilitating the exploration of critical biological processes such as cell differentiation, repair, signaling, and protein functionality, and the advancement of biosensing techniques. Of particular significance is the rapid heat cycling that can be achieved through thermoplasmonics, which has ushered in remarkable technical innovations such as accelerated amplification of DNA through quantitative reverse transcription polymerase chain reaction. Finally, medical applications of photothermal therapy have recently completed clinical trials with remarkable results in prostate cancer, which will inevitably lead to the implementation of photothermal therapy for a number of diseases in the future. Within this review, we offer a survey of the latest advancements in the burgeoning field of thermoplasmonics, with a keen emphasis on its transformative applications within the realm of biosciences.
Collapse
Affiliation(s)
| | - Mohammad Reza Arastoo
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Guillermo Moreno-Pescador
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Poul Martin Bendix
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| |
Collapse
|
3
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. On the Road to Precision Medicine: Magnetic Systems for Tissue Regeneration, Drug Delivery, Imaging, and Theranostics. Pharmaceutics 2023; 15:1812. [PMID: 37513999 PMCID: PMC10383406 DOI: 10.3390/pharmaceutics15071812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Magnetic systems have always been considered as attractive due to their remarkable versatility [...].
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
4
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
5
|
Elizarova TN, Antopolsky ML, Novichikhin DO, Skirda AM, Orlov AV, Bragina VA, Nikitin PI. A Straightforward Method for the Development of Positively Charged Gold Nanoparticle-Based Vectors for Effective siRNA Delivery. Molecules 2023; 28:molecules28083318. [PMID: 37110552 PMCID: PMC10144622 DOI: 10.3390/molecules28083318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The therapeutic potential of short interfering RNA (siRNA) to treat many diseases that are incurable with traditional preparations is limited by the extensive metabolism of serum nucleases, low permeability through biological membrane barriers because of a negative charge, and endosomal trapping. Effective delivery vectors are required to overcome these challenges without causing unwanted side effects. Here, we present a relatively simple synthetic protocol to obtain positively charged gold nanoparticles (AuNPs) with narrow size distribution and the surface modified with Tat-related cell-penetrating peptide. The AuNPs were characterized using TEM and the localized surface plasmon resonance technique. The synthesized AuNPs showed low toxicity in experiments in vitro and were able to effectively form complexes with double-stranded siRNA. The obtained delivery vehicles were used for intracellular delivery of siRNA in an ARPE-19 cell line transfected with secreted embryonic alkaline phosphatase (SEAP). The delivered oligonucleotide remained intact and caused a significant knockdown effect on SEAP cell production. The developed material could be useful for delivery of negatively charged macromolecules, such as antisense oligonucleotides and various RNAs, particularly for retinal pigment epithelial cell drug delivery.
Collapse
Affiliation(s)
- Tatiana N Elizarova
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim L Antopolsky
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Denis O Novichikhin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vera A Bragina
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| |
Collapse
|
6
|
Shabalkin ID, Komlev AS, Tsymbal SA, Burmistrov OI, Zverev VI, Krivoshapkin PV. Multifunctional tunable ZnFe 2O 4@MnFe 2O 4 nanoparticles for dual-mode MRI and combined magnetic hyperthermia with radiotherapy treatment. J Mater Chem B 2023; 11:1068-1078. [PMID: 36625200 DOI: 10.1039/d2tb02186b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With the increase in non-communicable diseases, cancer is becoming one of the most lethal ailments of the coming decades. Significant progress has been made in the development of NPs that combine diagnostic and therapeutic properties in a single system. Multimodal NPs that sequentially perform MRI diagnostics with increased contrast and then act as synergistic agents for magnetic hyperthermia and radiotherapy can be considered as next-generation anticancer drugs. Thus, we propose a systematic study of composite theranostic ZnFe2O4@MnFe2O4 NPs for the first time. Two types of magnetic NPs with MnFe2O4 shell thicknesses of 0.5 (ZM0.5) and 1.7 nm (ZM3) were prepared via hydrothermal synthesis. Tuning the shell thickness was shown to influence the NP r2 and r1 relaxivities and allow T1-T2 dual-mode contrast agents to be obtained. A radiotherapy study demonstrated a significant dose factor enhancement (about 40%) for both NP types. The specific absorption rate of ZM3 in a 100 Oe alternating magnetic field with a frequency of 75 kHz was found to be 8 W g-1, which results in heating up to 42 °C within a few seconds. This work presents high-performance multifunctional NPs capable of combining different diagnostic and therapeutic methods for a full course of treatment using only one type of NP.
Collapse
Affiliation(s)
- Ilia D Shabalkin
- SCAMT Institute, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russian Federation.
| | - Alexey S Komlev
- Faculty of Physics, Moscow State University, 1 Kolmogorova Street, Moscow, 119991, Russian Federation
| | - Sergey A Tsymbal
- SCAMT Institute, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russian Federation.
| | - Oleg I Burmistrov
- School of Physics and Engineering, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russian Federation
| | - Vladimir I Zverev
- Faculty of Physics, Moscow State University, 1 Kolmogorova Street, Moscow, 119991, Russian Federation
| | - Pavel V Krivoshapkin
- SCAMT Institute, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russian Federation.
| |
Collapse
|
7
|
Sui C, Tan R, Liu Z, Li X, Xu W. Smart Chemical Oxidative Polymerization Strategy To Construct Au@PPy Core-Shell Nanoparticles for Cancer Diagnosis and Imaging-Guided Photothermal Therapy. Bioconjug Chem 2023; 34:257-268. [PMID: 36516477 DOI: 10.1021/acs.bioconjchem.2c00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging-guided photothermal therapy (PTT) in a single nanoscale platform has aroused extensive research interest in precision medicine, yet only a few methods have gained wide acceptance. Thus, it remained an urgent need to facilely develop biocompatible and green probes with excellent theranostic capacity for superior biomedical applications. In this study, a smart chemical oxidative polymerization strategy was successfully developed for the synthesis of Au@PPy core-shell nanoparticles with polyvinyl alcohol (PVA) as the hydrophile. In the reaction, the reactant tetrachloroauric acid (HAuCl4) was reduced by pyrrole to fabricate a gold (Au) core, and pyrrole was oxidized to deposit around the Au core to form a polypyrrole (PPy) shell. The as-synthesized Au@PPy nanoparticles showed a regular core-shell morphology and good colloidal stability. Relying on the high X-ray attenuation of Au and strong near-infrared (NIR) absorbance of PPy and Au, Au@PPy nanoparticles exhibited excellent performance in blood pool/tumor imaging and PTT treatment by a series of in vivo experiments, in which tumor could be precisely positioned and thoroughly eradicated. Hence, the facile chemical oxidative polymerization strategy for constructing monodisperse Au@PPy core-shell nanoparticles with potential for cancer diagnosis and imaging-guided photothermal therapy shed light on an innovative design concept for the facile fabrication of biomedical materials.
Collapse
Affiliation(s)
- Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Rui Tan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Zifan Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| |
Collapse
|
8
|
CT and MRI Imaging of Theranostic Bimodal Fe 3O 4@Au NanoParticles in Tumor Bearing Mice. Int J Mol Sci 2022; 24:ijms24010070. [PMID: 36613511 PMCID: PMC9820463 DOI: 10.3390/ijms24010070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Gold-containing nanoparticles are proven to be an effective radiosensitizer in the radiotherapy of tumors. Reliable imaging of nanoparticles in a tumor and surrounding normal tissues is crucial both for diagnostics and for nanoparticle application as radiosensitizers. The Fe3O4 core was introduced into gold nanoparticles to form a core/shell structure suitable for MRI imaging. The aim of this study was to assess the in vivo bimodal CT and MRI enhancement ability of novel core/shell Fe3O4@Au theranostic nanoparticles. Core/shell Fe3O4@Au nanoparticles were synthesized and coated with PEG and glucose. C57Bl/6 mice bearing Ca755 mammary adenocarcinoma tumors received intravenous injections of the nanoparticles. CT and MRI were performed at several timepoints between 5 and 102 min, and on day 17 post-injection. Core/shell Fe3O4@Au nanoparticles provided significant enhancement of the tumor and tumor blood vessels. Nanoparticles also accumulated in the liver and spleen and were retained in these organs for 17 days. Mice did not show any signs of toxicity over the study duration. These results indicate that theranostic bimodal Fe3O4@Au nanoparticles are non-toxic and serve as effective contrast agents both for CT and MRI diagnostics. These nanoparticles have potential for future biomedical applications in cancer diagnostics and beyond.
Collapse
|
9
|
Kiseleva T, Abbas R, Martinson K, Komlev A, Lazareva E, Tyapkin P, Solodov E, Rusakov V, Pyatakov A, Tishin A, Perov N, Uyanga E, Sangaa D, Popkov V. Size-Dependent Structural, Magnetic and Magnetothermal Properties of Y 3Fe 5O 12 Fine Particles Obtained by SCS. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2733. [PMID: 36014598 PMCID: PMC9415609 DOI: 10.3390/nano12162733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Iron-containing oxides are the most important functional substance class and find a tremendous variety of applications. An attractive modern application is their use in biomedical technologies as components in systems for imaging, drug delivery, magnetically mediated hyperthermia, etc. In this paper, we report the results of the experimental investigation of submicron Y3Fe5O12 garnet particles obtained in different sizes by solution combustion synthesis (SCS) using glycine organic fuel to discuss the interdependence of peculiarities of the crystal and magnetic structure and size's influence on its functional magnetothermal performance. A complex study including Mössbauer and Raman spectroscopy accompanied by X-ray diffractometry, SEM, and measurements of field and temperature magnetic properties were performed. The influence of the size effects and perfectness of structure on the particle set magnetization was revealed. The ranges of different mechanisms of magnetothermal effect in the AC magnetic field were determined.
Collapse
Affiliation(s)
- Tatiana Kiseleva
- Physics Faculty, Moscow M.V. Lomonosov State University, Leninskie Gory, b.1, Str. 2, 119991 Moscow, Russia
| | - Rashad Abbas
- Saint Petersburg State Institute of Technology, 190013 St. Petersburg, Russia
| | - Kirill Martinson
- Ioffe Institute, Politechnicheskaya Str., 26, 194021 St. Petersburg, Russia
| | - Aleksei Komlev
- Physics Faculty, Moscow M.V. Lomonosov State University, Leninskie Gory, b.1, Str. 2, 119991 Moscow, Russia
| | - Evgenia Lazareva
- Physics Faculty, Moscow M.V. Lomonosov State University, Leninskie Gory, b.1, Str. 2, 119991 Moscow, Russia
| | - Pavel Tyapkin
- Institute of Solid-State Chemistry and Mechanochemistry RAS, Kutateladze Str., 18, 630090 Novosibirsk, Russia
| | - Evgeniy Solodov
- Physics Faculty, Moscow M.V. Lomonosov State University, Leninskie Gory, b.1, Str. 2, 119991 Moscow, Russia
| | - Vyacheslav Rusakov
- Physics Faculty, Moscow M.V. Lomonosov State University, Leninskie Gory, b.1, Str. 2, 119991 Moscow, Russia
| | - Alexander Pyatakov
- Physics Faculty, Moscow M.V. Lomonosov State University, Leninskie Gory, b.1, Str. 2, 119991 Moscow, Russia
| | - Alexander Tishin
- Physics Faculty, Moscow M.V. Lomonosov State University, Leninskie Gory, b.1, Str. 2, 119991 Moscow, Russia
| | - Nikolai Perov
- Physics Faculty, Moscow M.V. Lomonosov State University, Leninskie Gory, b.1, Str. 2, 119991 Moscow, Russia
| | - Enkhnaran Uyanga
- Institute of Physics and Technology, Ulaanbaatar 13330, Mongolia
| | - Deleg Sangaa
- Institute of Physics and Technology, Ulaanbaatar 13330, Mongolia
| | - Vadim Popkov
- Ioffe Institute, Politechnicheskaya Str., 26, 194021 St. Petersburg, Russia
| |
Collapse
|