1
|
Kim YG, Jeon H, Boya BR, Lee JH, Lee J. Targeting biofilm formation in Candida albicans with halogenated pyrrolopyrimidine derivatives. Eur J Med Chem 2025; 290:117528. [PMID: 40121868 DOI: 10.1016/j.ejmech.2025.117528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Growing concern over environmental contaminants, including pharmaceuticals and antifungal agents, highlights their role in promoting resistance and biofilm formation by microorganisms. Antifungal resistance, especially in drug-resistant Candida spp., poses a global threat, worsened by the widespread use of antifungal agents in both clinical applications and environmental contamination. This study investigates the antibiofilm properties of various halogenated pyrrolo pyrimidine derivatives, specifically 4-chloro-5-iodo-7H-pyrrolo[2,3-d]pyrimidine (10) and 2,4-dichloro-5-iodo-7H-pyrrolo[2,3-d]pyrimidine (16), against fluconazole-resistant C. albicans. Both compounds demonstrated strong biofilm inhibition, with 16 showing greater efficacy even at lower concentrations. qRT-PCR analysis revealed downregulation of key biofilm- and hyphae/germ tube-relating genes, including ALS3, HWP1, and ECE1, alongside upregulation of stress response and biofilm regulator genes such as CDR11, GST3, IFD6, UCF1, YWP1, and ZAP1, indicating complex regulatory responses to the treatments. Molecular docking analysis revealed that these compounds bind effectively to the binding cavity of the ALS3 protein, with halogen atoms playing a key role in stabilizing interaction. Compound 16 exhibited minimal cytotoxicity in Brassica rapa and Caenorhabditis elegans models, suggesting a favorable ADMET safety profile. Confocal microscopy analysis confirmed the compounds effectiveness in preventing biofilm formation when applied as biodegradable PLGA coatings on biomaterial surfaces. These findings suggest that 16 holds promise as a potent antifungal agent with reduced environmental impact, offering both efficacy and sustainability.
Collapse
Affiliation(s)
- Yong-Guy Kim
- The Institute of Clean Technology, Yeungnam University, 280 Daehakro, Gyeongsansi, Gyeonsanggbukdo, 38541, Republic of Korea
| | - Hyejin Jeon
- School of Chemical Engineering, Yeungnam University, 280 Daehakro, Gyeongsansi, Gyeonsanggbukdo, 38541, Republic of Korea
| | - Bharath Reddy Boya
- School of Chemical Engineering, Yeungnam University, 280 Daehakro, Gyeongsansi, Gyeonsanggbukdo, 38541, Republic of Korea
| | - Jin-Hyung Lee
- The Institute of Clean Technology, Yeungnam University, 280 Daehakro, Gyeongsansi, Gyeonsanggbukdo, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehakro, Gyeongsansi, Gyeonsanggbukdo, 38541, Republic of Korea.
| |
Collapse
|
2
|
Lee JH, Kim YG, Choi JS, Jeong YT, Hwang BS, Lee J. Antibiofilm and Antihemolytic Activities of Actinostemma lobatum Extract Rich in Quercetin against Staphylococcus aureus. Pharmaceutics 2024; 16:1075. [PMID: 39204420 PMCID: PMC11359957 DOI: 10.3390/pharmaceutics16081075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Staphylococcus aureus biofilm formation is a pivotal mechanism in the development of drug resistance, conferring resilience against conventional antibiotics. This study investigates the inhibitory effects of Actinostemma lobatum (A. lobatum) Maxim extracts on S. aureus biofilm formation and their antihemolytic activities, with a particular focus on identifying the active antibiofilm and antihemolysis compound, quercetin. Seven solvent extracts and twelve sub-fractions were evaluated against four S. aureus strains. The ethyl acetate fraction (10 to 100 μg/mL) significantly hindered biofilm formation by both methicillin-sensitive and -resistant strains. Bioassay-guided isolation of the ethyl acetate extract identified quercetin as the major antibiofilm compound. The ethyl acetate extract was found to contain 391 μg/mg of quercetin and 30 μg/mg of kaempferol. Additionally, the A. lobatum extract exhibited antihemolytic activity attributable to the presence of quercetin. The findings suggest that quercetin-rich extracts from A. lobatum and other quercetin-rich foods and plants hold promise for inhibiting resilient S. aureus biofilm formation and attenuating its virulence.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (J.-H.L.); (Y.-G.K.)
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (J.-H.L.); (Y.-G.K.)
| | - Ji-Su Choi
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si 37242, Republic of Korea; (J.-S.C.); (Y.T.J.)
| | - Yong Tae Jeong
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si 37242, Republic of Korea; (J.-S.C.); (Y.T.J.)
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si 37242, Republic of Korea; (J.-S.C.); (Y.T.J.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (J.-H.L.); (Y.-G.K.)
| |
Collapse
|
3
|
Fang L, Zhang Y, Cheng L, Zheng H, Wang Y, Qin L, Cai Y, Cheng L, Zhou W, Liu F, Wang S. Silica nanoparticles containing nano-silver and chlorhexidine to suppress Porphyromonas gingivalis biofilm and modulate multispecies biofilms toward healthy tendency. J Oral Microbiol 2024; 16:2361403. [PMID: 38847000 PMCID: PMC11155433 DOI: 10.1080/20002297.2024.2361403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Objectives This research first investigated the effect of mesoporous silica nanoparticles (nMS) carrying chlorhexidine and silver (nMS-nAg-Chx) on periodontitis-related biofilms. This study aimed to investigate (1) the antibacterial activity on Porphyromonas gingivalis (P. gingivalis) biofilm; (2) the suppressing effect on virulence of P. gingivalis biofilm; (3) the regulating effect on periodontitis-related multispecies biofilm. Methods Silver nanoparticles (nAg) and chlorhexidine (Chx) were co-loaded into nMS to form nMS-nAg-Chx. Inhibitory zone test and minimum inhibitory concentration (MIC) against P. gingivalis were tested. Growth curves, crystal violet (CV) staining, live/dead staining and scanning electron microscopy (SEM) observation were performed. Biofilm virulence was assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and Quantitative Real Time-PCR (qPCR) were performed to validate the activity and composition changes of multispecies biofilm (P. gingivalis, Streptococcus gordonii and Streptococcus sanguinis). Results nMS-nAg-Chx inhibited P. gingivalis biofilm dose-dependently (p<0.05), with MIC of 18.75 µg/mL. There were fewer live bacteria, less biomass and less virulence in nMS-nAg-Chx groups (p<0.05). nMS-nAg-Chx inhibited and modified periodontitis-related biofilms. The proportion of pathogenic bacteria decreased from 16.08 to 1.07% and that of helpful bacteria increased from 82.65 to 94.31% in 25 μg/mL nMS-nAg-Chx group for 72 h. Conclusions nMS-nAg-Chx inhibited P. gingivalis growth, decreased biofilm virulence and modulated periodontitis-related multispecies biofilms toward healthy tendency. pH-sensitive nMS-nAg-Chx inhibit the pathogens and regulate oral microecology, showing great potential in periodontitis adjunctive therapy.
Collapse
Affiliation(s)
- Lixin Fang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yishuang Zhang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Long Cheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiyi Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lu Qin
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingchun Cai
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Wen Zhou
- School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, Fuzhou, China
| | - Fei Liu
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suping Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Xu J, Chen X, Song J, Wang C, Xu W, Tan H, Suo H. Antibacterial activity and mechanism of cell-free supernatants of Lacticaseibacillus paracasei against Propionibacterium acnes. Microb Pathog 2024; 189:106598. [PMID: 38423403 DOI: 10.1016/j.micpath.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Propionibacterium acnes (P. acnes) is an anaerobic and gram-positive bacterium involved in the pathogenesis and inflammation of acne vulgaris. This study particularly focuses on the antimicrobial effect of Lacticaseibacillus paracasei LPH01 against P. acnes, a bacterium that causes acne vulgaris. Fifty-seven Lactobacillus strains were tested for their ability to inhibit P. acnes growth employing the Oxford Cup and double dilution methods. The cell-free supernatant (CFS) of L. paracasei LPH01 demonstrated a strong inhibitory effect, with an inhibition zone diameter of 24.65 ± 0.27 mm and a minimum inhibitory concentration of 12.5 mg/mL. Among the CFS, the fraction over 10 kDa (CFS-10) revealed the best antibacterial effect. Confocal laser scanning microscopes and flow cytometry showed that CFS-10 could reduce cell metabolic activity and cell viability and destroy the integrity and permeability of the cell membrane. A scanning electron microscope revealed that bacterial cells exhibited obvious morphological and ultrastructural changes, which further confirmed the damage of CFS-10 to the cell membrane and cell wall. Findings demonstrated that CFS-10 inhibited the conversion of triglycerides, decreased the production of free fatty acids, and down-regulated the extracellular expression of the lipase gene. This study provides a theoretical basis for the metabolite of L. paracasei LPH01 as a potential antibiotic alternative in cosmeceutical skincare products.
Collapse
Affiliation(s)
- Jiahui Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Weiping Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Han Tan
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
5
|
Lee JH, Kim YG, Lee J. Antibiofilm activity of lawsone against polymicrobial enterohemorrhagic Escherichia coli O157:H7 and Candida albicans by suppression of curli production and hyphal growth. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155306. [PMID: 38176270 DOI: 10.1016/j.phymed.2023.155306] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Most bacteria and fungi form biofilms that attach to living or abiotic surfaces. These biofilms diminish the efficacy of antimicrobial agents and contribute to chronic infections. Furthermore, multispecies biofilms composed of bacteria and fungi are often found at chronic infection sites. PURPOSE In this study, lawsone (2‑hydroxy-1,4-naphthoquinone) and its parent 1,4-naphthoquinone were studied for antimicrobial and antibiofilm activities against single-species and multispecies biofilms of enterohemorrhagic Escherichia coli O157:H7 (EHEC) and Candida albicans. METHODS Biofilm formation assays, biofilm eradication assays, antimicrobial assays, live cell imaging microscopy, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), extracellular polymeric substances and indole production, cell surface hydrophilicity assay, cell motility, cell aggregation, hyphal growth, dual species biofilm formation, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and toxicity assays on plant seed germination and nematode model were utilized to investigate how lawsone affect biofilm development. RESULTS Sub-inhibitory concentrations of lawsone (35 µg/ml) significantly inhibited single-and multispecies biofilm development. Lawsone reduced the production of curli and indole, and the swarming motility of EHEC, efficiently inhibited C. albicans cell aggregation and hyphal formation, and increased the cell surface hydrophilicity of C. albicans. Transcriptomic analysis showed that lawsone suppressed the expression of the curli-related genes csgA and csgB in EHEC, and the expression of several hypha- and biofilm-related genes (ALS3, ECE1, HWP1, and UME6) in C. albicans. In addition, lawsone up to 100 µg/ml was nontoxic to the nematode Caenorhabditis elegans and to the seed growth of Brassica rapa and Triticum aestivum. CONCLUSION These results show that lawsone inhibits dual biofilm development and suggest that it might be useful for controlling bacterial or fungal infections and multispecies biofilms.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
Park HA, Seo H, Kim S, Haq AU, Bae SH, Lee HJ, Ju SH, Tajdozian H, Rahim MA, Ghorbanian F, Barman I, Yoon Y, Jo S, Lee Y, Cho G, Jo H, Kim M, Lee S, Song HY. Clinical effect of Pediococcus acidilactici PMC48 on hyperpigmented skin. J Cosmet Dermatol 2024; 23:215-226. [PMID: 37381171 DOI: 10.1111/jocd.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND The excessive production and accumulation of melanin in the epidermal skin layer can result in skin hyperpigmentation and darkening. Current technologies for regulating melanin are based on inhibiting melanin biosynthesis. They have low effectiveness and safety issues. AIMS This study aimed to evaluate the potential role of Pediococcus acidilactici PMC48 as a probiotic strain in medicines and cosmetics for skin treatment. MATERIALS AND METHODS Meanwhile, our research team has reported that P. acidilactici PMC48 strain isolated from sesame leaf kimchi can directly decompose the already synthesized melanin. It can also inhibit melanin biosynthesis. In the present study, we investigated the skin-whitening effect of this strain by arranging an 8-week clinical trial with 22 participants. PMC48 was applied to each participant's artificially UV-induced tanned skin in the clinical trial. Its whitening effect was investigated based on visual evaluation, skin brightness, and melanin index. RESULTS PMC48 showed a significant effect on the artificially induced pigmented skin. The color intensity of the tanned skin was decreased by 47.647%, and skin brightness was increased by 8.098% after the treatment period. PMC48 also significantly decreased the melanin index by 11.818%, indicating its tyrosinase inhibition capacity. Also, PMC48 improved skin moisture content level by 20.943%. Additionally, 16S rRNA-based amplicon sequencing analysis showed a distinct increase in Lactobacillaceae in the skin by up to 11.2% at the family level without affecting other skin microbiota. Furthermore, it showed no toxicity in in vitro or in vivo analyses. DISCUSSION These results indicate that P. acidilactici PMC48 is a promising probiotic strain that can be used to develop medicines and cosmetic products to solve skin-related problems. CONCLUSIONS These results demonstrate that P. acidilactici PMC48 can be a potential probiotic for the cosmetic industry against different skin disorders.
Collapse
Affiliation(s)
- Hyun-A Park
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Korea
| | - Asad Ul Haq
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Korea
| | - Sung Hae Bae
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Korea
| | - Hyun-Ji Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Korea
| | - Se Hee Ju
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Korea
| | - Hanieh Tajdozian
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Md Abdur Rahim
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Fatemeh Ghorbanian
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Indrajeet Barman
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Youjin Yoon
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Youngkyoung Lee
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | | | | | - Mijung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Korea
| | - Saebim Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Korea
| |
Collapse
|
7
|
Lee JH, Kim YG, Kim Y, Lee J. Antifungal and antibiofilm activities of chromones against nine Candida species. Microbiol Spectr 2023; 11:e0173723. [PMID: 37874140 PMCID: PMC10714962 DOI: 10.1128/spectrum.01737-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The persistence of Candida infections is due to its ability to form biofilms that enable it to resist antifungals and host immune systems. Hence, inhibitions of the biofilm formation and virulence characteristics of Candida sp. provide potential means of addressing these infections. Among various chromone derivatives tested, four chromone-3-carbonitriles showed antifungal, antibiofilm, and antivirulence activities against several Candida species. Their mode of action has been partially revealed, and their toxicity is reported here using nematode and plant models.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yeseul Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
8
|
Liang S, Bo H, Zhang Y, Zhen H, Zhong L. Alizarin, an Agonist of AHR Receptor, Enhances CYP1A1 Enzyme Activity and Induces Transcriptional Changes in Hepatoma Cells. Molecules 2023; 28:7373. [PMID: 37959792 PMCID: PMC10650112 DOI: 10.3390/molecules28217373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The phytopigment alizarin was previously characterized as an anti-tumor drug owing to its antioxidant or antigenotoxic activities. However, the safety of alizarin is currently still under dispute. In this study, we explored the activity of alizarin in the AHR-CYP1A1 pathway and analyzed the transcriptional changes affected by alizarin using human hepatoma cell line HepG2-based assays. The results showed that alizarin decreased HepG2 cell viability in a dose-dependent manner, with IC50 values between 160.4 and 216.8 μM. Furthermore, alizarin significantly upregulated the expression of CYP1A1 and increased the ethoxyresorufin-O-deethylase activity. Alizarin also exhibited agonistic activity toward the AHR receptor in the XRE-mediated luciferase reporter gene assay, which was further confirmed via the molecular docking assay. In addition, the transcriptional analysis indicated that alizarin may act as a potential carcinogen through significantly enriching several items related to cancer in both DO and KEGG analysis. In brief, our findings indicated that alizarin shows agonistic activities to the AHR receptor through activating the AHR-CYP1A1 signaling pathway in HepG2 cells, which may lead to the risks for cancer developing.
Collapse
Affiliation(s)
- Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Haimei Bo
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Yue Zhang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Hongcheng Zhen
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Li Zhong
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
9
|
Lu X, Li W, Wang Q, Wang J, Qin S. Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules 2023; 28:5364. [PMID: 37513236 PMCID: PMC10385551 DOI: 10.3390/molecules28145364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Natural plant pigments are safe and have low toxicity, with various nutrients and biological activities. However, the extraction, preservation, and application of pigments are limited due to the instability of natural pigments. Therefore, it is necessary to examine the extraction and application processes of natural plant pigments in detail. This review discusses the classification, extraction methods, biological activities, and modification methods that could improve the stability of various pigments from plants, providing a reference for applying natural plant pigments in the industry and the cosmetics, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Xianwen Lu
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264032, China
| |
Collapse
|
10
|
Fang H, Tian L, Ye N, Zhang S. Alizarin enhancement of the abundance of ARGs and impacts on the microbial community in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2250-2264. [PMID: 37186628 PMCID: wst_2023_138 DOI: 10.2166/wst.2023.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Alizarin, a dyestuff from herbs, showed effective inhibition effects on pathogenic bacteria, and thus has been frequently used in the world as the main alternative to antibiotics in the treatment of inflammations and pathogen infections. However, it was unclear whether alizarin played key a role in antibiotic-induced antibiotic-resistant gene (ARG) alterations and impacted microbial community shifts in aquatic environments. In this study, the effects of alizarin or co-exposure of alizarin with antibiotics on the fate of ARGs, class 1 integron-integrase gene (intI1), and microbial populations in lake water were investigated, and the potential hosts for ARGs were analyzed. The results showed that the absolute abundance of 16s rRNA gene, ARGs (tetA, tetC, and qnrS), and intI1 were increased during the treatment of alizarin. The combination of alizarin and antibiotics was superior to alizarin in its ability to promote population growth of bacteria and induce ARGs. Additionally, alizarin more significantly altered the community composition of microorganisms in water, which resulted in differences in bacterial communities and functions.
Collapse
Affiliation(s)
- Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| | - Lingyun Tian
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| | - Nan Ye
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| |
Collapse
|
11
|
Raghuveer D, Pai VV, Murali TS, Nayak R. Exploring Anthraquinones as Antibacterial and Antifungal agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Dhanush Raghuveer
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - V. Varsha Pai
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - Thokur Sreepathy Murali
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - Roopa Nayak
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
12
|
Guo Z, Yang Y, Wu Q, Liu M, Zhou L, Zhang L, Dong D. New insights into the characteristic skin microorganisms in different grades of acne and different acne sites. Front Microbiol 2023; 14:1167923. [PMID: 37180251 PMCID: PMC10172595 DOI: 10.3389/fmicb.2023.1167923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Background The increasing maturity of sequencing technology provides a convenient approach to studying the role of skin microorganisms in acne pathogenesis. However, there are still too few studies about the skin microbiota of Asian acne patients, especially a lack of detailed analysis of the characteristics of the skin microbiota in the different acne sites. Methods In this study, a total of 34 college students were recruited and divided into the health, mild acne, and severe acne groups. The bacterial and fungal flora of samples were separately detected by 16S and 18S rRNA gene sequencing. The biomarkers of different acne grades and different acne sites [forehead, cheek, chin, torso (including chest and back)] were excavated. Results and Discussion Our results indicated that there was no significant difference in species diversity between groups. The genera like Propionibacterium, Staphylococcus, Corynebacterium, and Malassezia, which have a relatively high abundance in the skin microbiota and were reported as the most acne-associated microbes, were no obvious differences between groups. On the contrary, the abundance of less reported Gram-negative bacteria (Pseudomonas, Ralstonia, and Pseudidiomarina) and Candida has a significant alteration. Compared with the health group and the mild group, in the severe group, the abundance of Pseudomonas and Ralstonia sharply reduced while that of Pseudidiomarina and Candida remarkably raised. Moreover, different acne sites have different numbers and types of biomarkers. Among the four acne sites, the cheek has the greatest number of biomarkers including Pseudomonas, Ralstonia, Pseudidiomarina, Malassezia, Saccharomyces, and Candida, while no biomarker was observed for the forehead. The network analysis indicated that there might be a competitive relationship between Pseudomonas and Propionibacterium. This study would provide a new insight and theoretical basis for precise and personalized acne microbial therapy.
Collapse
Affiliation(s)
- Zitao Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yuliang Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Qianjie Wu
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Meng Liu
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Leyuan Zhou
- Department of Radiation Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- *Correspondence: Liang Zhang,
| | - Dake Dong
- Department of Dermatology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Dake Dong,
| |
Collapse
|
13
|
Kim YG, Lee JH, Park S, Khadke SK, Shim JJ, Lee J. Hydroquinones Including Tetrachlorohydroquinone Inhibit Candida albicans Biofilm Formation by Repressing Hyphae-Related Genes. Microbiol Spectr 2022; 10:e0253622. [PMID: 36190417 PMCID: PMC9602536 DOI: 10.1128/spectrum.02536-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus responsible for candidiasis. The pathogen readily forms antifungal agent-resistant biofilms on implanted medical devices or human tissue. Morphologic transition from yeast to filamentous cells and subsequent biofilm formation is a key virulence factor and a prerequisite for biofilm development by C. albicans. We investigated the antibiofilm and antifungal activities of 18 hydroquinones against fluconazole-resistant C. albicans. Tetrachlorohydroquinone (TCHQ) at subinhibitory concentrations (2 to 10 μg/mL) significantly inhibited C. albicans biofilm formation with an MIC of 50 μg/mL, whereas the backbone hydroquinone did not (MIC > 400 μg/mL), and it markedly inhibited cell aggregation and hyphal formation. Transcriptomic analyses showed that TCHQ downregulated the expressions of several hyphae-forming and biofilm-related genes (ALS3, ECE1, HWP1, RBT5, and UME6) but upregulated hyphae- and biofilm-inhibitory genes (IFD6 and YWP1). Furthermore, it prevented C. albicans biofilm development on porcine skin and at concentrations of 20 to 50 μg/mL was nontoxic to the nematode Caenorhabditis elegans and did not adversely affect Brassica rapa seed germination and growth. This study indicates that hydroquinones, particularly TCHQ, diminish the virulence, biofilm formation, and animal tissue adhesion of C. albicans, which suggests hydroquinones should be considered potential candidate antifungal agents against drug-resistant C. albicans strains. IMPORTANCE Persistence in chronic infections by Candida albicans is due to its ability of biofilm formation that endures conventional antifungals and host immune systems. Hence, the inhibition of biofilm formation and virulence characteristics is another mean of addressing infections. This study is a distinctive one since 18 hydroquinone analogues were screened and TCHQ efficiently inhibited the biofilm formation by C. albicans with significantly changed expressional profile of hyphae-forming and biofilm-related genes. The antibiofilm efficacy was confirmed using a porcine skin model and chemical toxicity was investigated using plant seed germination and nematode models. Our findings reveal that TCHQ can efficiently control the C. albicans biofilms and virulence characteristics.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sunyoung Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sagar Kiran Khadke
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|