1
|
Bonfield TL, Zuckerman ST, Sutton MT, Korley JN, von Recum HA. Polymerized cyclodextrin microparticles for sustained antibiotic delivery in lung infections. J Biomed Mater Res A 2024; 112:1305-1316. [PMID: 38380736 PMCID: PMC11187681 DOI: 10.1002/jbm.a.37680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Pulmonary infections complicate chronic lung diseases requiring attention to both the pathophysiology and complexity associated with infection management. Patients with cystic fibrosis (CF) struggle with continuous bouts of pulmonary infections, contributing to lung destruction and eventual mortality. Additionally, CF patients struggle with airways that are highly viscous, with accumulated mucus creating optimal environments for bacteria colonization. The unique physiology and altered airway environment provide an ideal niche for bacteria to change their phenotype often becoming resistant to current treatments. Colonization with multiple pathogens at the same time further complicate treatment algorithms, requiring drug combinations that can challenge CF patient tolerance to treatment. The goal of this research initiative was to explore the utilization of a microparticle antibiotic delivery system, which could provide localized and sustained antibiotic dosing. The outcome of this work demonstrates the feasibility of providing efficient localized delivery of antibiotics to manage infection using both preclinical in vitro and in vivo CF infection models. The studies outlined in this manuscript demonstrate the proof-of-concept and unique capacity of polymerized cyclodextrin microparticles to provide site-directed management of pulmonary infections.
Collapse
Affiliation(s)
- Tracey L. Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University
| | - Sean T. Zuckerman
- Affinity Therapeutics, Cleveland Ohio, United States
- Department of Biomedical Engineering, Case Western Reserve University
| | - Morgan T. Sutton
- Department of Genetics and Genome Sciences, Case Western Reserve University
- Saint Jude Children Research Hospital Graduate School of Biomedical Sciences, Memphis Tennessee
| | | | - Horst A. von Recum
- Affinity Therapeutics, Cleveland Ohio, United States
- Department of Biomedical Engineering, Case Western Reserve University
| |
Collapse
|
2
|
D’Elia A, Jones OL, Canziani G, Sarkar B, Chaiken I, Rodell CB. Injectable Granular Hydrogels Enable Avidity-Controlled Biotherapeutic Delivery. ACS Biomater Sci Eng 2024; 10:1577-1588. [PMID: 38357739 PMCID: PMC10934254 DOI: 10.1021/acsbiomaterials.3c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Protein therapeutics represent a rapidly growing class of pharmaceutical agents that hold great promise for the treatment of various diseases such as cancer and autoimmune dysfunction. Conventional systemic delivery approaches, however, result in off-target drug exposure and a short therapeutic half-life, highlighting the need for more localized and controlled delivery. We have developed an affinity-based protein delivery system that uses guest-host complexation between β-cyclodextrin (CD, host) and adamantane (Ad, guest) to enable sustained localized biomolecule presentation. Hydrogels were formed by the copolymerization of methacrylated CD and methacrylated dextran. Extrusion fragmentation of bulk hydrogels yielded shear-thinning and self-healing granular hydrogels (particle diameter = 32.4 ± 16.4 μm) suitable for minimally invasive delivery and with a high host capacity for the retention of guest-modified proteins. Bovine serum albumin (BSA) was controllably conjugated to Ad via EDC chemistry without affecting the affinity of the Ad moiety for CD (KD = 12.0 ± 1.81 μM; isothermal titration calorimetry). The avidity of Ad-BSA conjugates was directly tunable through the number of guest groups attached, resulting in a fourfold increase in the complex half-life (t1/2 = 5.07 ± 1.23 h, surface plasmon resonance) that enabled a fivefold reduction in protein release at 28 days. Furthermore, we demonstrated that the conjugation of Ad to immunomodulatory cytokines (IL-4, IL-10, and IFNγ) did not detrimentally affect cytokine bioactivity and enabled their sustained release. Our strategy of avidity-controlled delivery of protein-based therapeutics is a promising approach for the sustained local presentation of protein therapeutics and can be applied to numerous biomedical applications.
Collapse
Affiliation(s)
- Arielle
M. D’Elia
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Olivia L. Jones
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Gabriela Canziani
- Department
of Biochemistry and Molecular Biology, Drexel
University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Biplab Sarkar
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department
of Biochemistry and Molecular Biology, Drexel
University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Christopher B. Rodell
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Shi CY, Zhan YF, Liu Y, Zhang ZP, Shen XY, Wu CK, Bai ZY, Zhang ZA, Wang J. Hydrophobic effects enhance xylooligosaccharides production from mulberry branch using xylanase-methacrylate conjugate-catalyzed hydrolysis. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
4
|
Longo R, Raimondo M, Vertuccio L, Ciardulli MC, Sirignano M, Mariconda A, Della Porta G, Guadagno L. Bottom-Up Strategy to Forecast the Drug Location and Release Kinetics in Antitumoral Electrospun Drug Delivery Systems. Int J Mol Sci 2023; 24:ijms24021507. [PMID: 36675021 PMCID: PMC9861055 DOI: 10.3390/ijms24021507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Electrospun systems are becoming promising devices usable for topical treatments. They are eligible to deliver different therapies, from anti-inflammatory to antitumoral. In the current research, polycaprolactone electrospun membranes loaded with synthetic and commercial antitumoral active substances were produced, underlining how the matrix-filler affinity is a crucial parameter for designing drug delivery devices. Nanofibrous membranes loaded with different percentages of Dacarbazine (the drug of choice for melanoma) and a synthetic derivative of Dacarbazine were produced and compared to membranes loaded with AuM1, a highly active Au-complex with low affinity to the matrix. AFM morphologies showed that the surface profile of nanofibers loaded with affine substances is similar to one of the unloaded systems, thanks to the nature of the matrix-filler interaction. FTIR analyses proved the efficacy of the interaction between the amidic group of the Dacarbazine and the polycaprolactone. In AuM1-loaded membranes, because of the weak matrix-filler interaction, the complex is mainly aggregated in nanometric domains on the nanofiber surface, which manifests a nanometric roughness. Consequently, the release profiles follow a Fickian behavior for the Dacarbazine-based systems, whereas a two-step with a highly prominent burst effect was observed for AuM1 systems. The performed antitumoral tests evidence the high-cytotoxic activity of the electrospun systems against melanoma cell lines, proving that the synthetic substances are more active than the commercial dacarbazine.
Collapse
Affiliation(s)
- Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Luigi Vertuccio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 813031 Aversa, Italy
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Marco Sirignano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, Università di Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Correspondence:
| |
Collapse
|
5
|
Soni SS, D'Elia AM, Alsasa A, Cho S, Tylek T, O'Brien EM, Whitaker R, Spiller KL, Rodell CB. Sustained release of drug-loaded nanoparticles from injectable hydrogels enables long-term control of macrophage phenotype. Biomater Sci 2022; 10:6951-6967. [PMID: 36341688 PMCID: PMC9724601 DOI: 10.1039/d2bm01113a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels may be pre-formed through dynamic crosslinks, allowing for injection and subsequent retention in the tissue by shear-thinning and self-healing processes, respectively. These properties enable the site-specific delivery of encapsulated therapeutics; yet, the sustained release of small-molecule drugs and their cell-targeted delivery remains challenging due to their rapid diffusive release and non-specific cellular biodistribution. Herein, we develop an injectable hydrogel system composed of a macrophage-targeted nanoparticle (cyclodextrin nanoparticles, CDNPs) crosslinked by adamantane-modified hyaluronic acid (Ad-HA). The polymer-nanoparticle hydrogel uniquely leverages cyclodextrin's interaction with small molecule drugs to create a spatially discrete drug reservoir and with adamantane to yield dynamic, injectable hydrogels. Through an innovative two-step drug screening approach and examination of 45 immunomodulatory drugs with subsequent in-depth transcriptional profiling of both murine and human macrophages, we identify celastrol as a potent inhibitor of pro-inflammatory (M1-like) behavior that furthermore promotes a reparatory (M2-like) phenotype. Celastrol encapsulation within the polymer-nanoparticle hydrogels permitted shear-thinning injection and sustained release of drug-laden nanoparticles that targeted macrophages to modulate cell behavior for greater than two weeks in vitro. The modular hydrogel system is a promising approach to locally modulate cell-specific phenotype in a range of applications for immunoregenerative medicine.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Abdulrahman Alsasa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Sylvia Cho
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Tina Tylek
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Erin M O'Brien
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Ricardo Whitaker
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Liu Z, Lin W, Liu Y. Macrocyclic Supramolecular Assemblies Based on Hyaluronic Acid and Their Biological Applications. Acc Chem Res 2022; 55:3417-3429. [PMID: 36380600 DOI: 10.1021/acs.accounts.2c00462] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyaluronic acid (HA), which contains multiple carboxyl, hydroxyl, and acetylamino groups and is an agent that targets tumors, has drawn great attention in supramolecular diagnosis and treatment research. It can not only assemble directly with macrocyclic host-guest complexes through hydrogen bonding and electrostatic interactions but also can be modified with macrocyclic compounds or functional guest molecules by an amidation reaction and used for further assembly. Macrocycles play a main role in the construction of supramolecular drug carriers, targeted imaging agents, and hydrogels, such as cyclodextrins and cucurbit[n]urils, which can encapsulate photosensitizers, drugs, or other functional guest molecules via host-guest interactions. Therefore, the formed supramolecular assemblies can respond to various stimuli, such as enzymes, light, electricity, and magnetism for controlled drug delivery, enhance the luminescence intensity of the assembly, and improve drug loading capacity. In addition, the nanosupramolecular assembly formed with HA can also improve the biocompatibility of drugs, reduce drug toxicity and side effects, and enhance cell permeability; thus, the assembly has extensive application value in biomedical research. This Account mainly focuses on macrocyclic supramolecular assemblies based on HA, especially their biological applications and progress in the field, and these assemblies include (i) guest-modified HA, such as pyridinium-, adamantane-, peptide-, and other functional-group-modified HA, along with their cyclodextrin and cucurbit[n]uril assemblies; (ii) macrocycle-modified HA, such as HA modified with cyclodextrins and cucurbit[n]uril derivatives and their assembly with various guests; (iii) direct assembly between unmodified HA and cyclodextrin- or cucurbit[n]uril-based host-guest complexes. Particularly, we discussed the important role of macrocyclic host-guest complexes in HA-based supramolecular assembly, and the roles included improving the water solubility and efficacy of hydrophobic drugs, enhancing the luminescent intensity of assemblies, inducing room temperature phosphorescence and providing energy transfer systems, constructing multi-stimulus-responsive supramolecular assemblies, and in situ formation of hydrogels. Additionally, we believe that obtaining in-depth knowledge of these HA-based macrocyclic supramolecular assemblies and their biological applications encompasses many challenges regarding drug carriers, targeted imaging agents, wound healing, and biomedical soft materials and would certainly contribute to the rapid development of supramolecular diagnosis and treatment.
Collapse
Affiliation(s)
- Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300000, China
| |
Collapse
|
7
|
Polymers Enhancing Bioavailability in Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102199. [PMID: 36297634 PMCID: PMC9609376 DOI: 10.3390/pharmaceutics14102199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
A drug's bioavailability, i.e., the extent to and rate at which it enters the systemic circulation, thus accessing the site of action, is largely determined by the properties of the drug [...].
Collapse
|