1
|
Meng R, Zhu H, Deng P, Li M, Ji Q, He H, Jin L, Wang B. Research progress on albumin-based hydrogels: Properties, preparation methods, types and its application for antitumor-drug delivery and tissue engineering. Front Bioeng Biotechnol 2023; 11:1137145. [PMID: 37113668 PMCID: PMC10127125 DOI: 10.3389/fbioe.2023.1137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Albumin is derived from blood plasma and is the most abundant protein in blood plasma, which has good mechanical properties, biocompatibility and degradability, so albumin is an ideal biomaterial for biomedical applications, and drug-carriers based on albumin can better reduce the cytotoxicity of drug. Currently, there are numerous reviews summarizing the research progress on drug-loaded albumin molecules or nanoparticles. In comparison, the study of albumin-based hydrogels is a relatively small area of research, and few articles have systematically summarized the research progress of albumin-based hydrogels, especially for drug delivery and tissue engineering. Thus, this review summarizes the functional features and preparation methods of albumin-based hydrogels, different types of albumin-based hydrogels and their applications in antitumor drugs, tissue regeneration engineering, etc. Also, potential directions for future research on albumin-based hydrogels are discussed.
Collapse
Affiliation(s)
- Run Meng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Peiying Deng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qingzhi Ji
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, China
| | - Hao He
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Vesković A, Bajuk-Bogdanović D, Arion VB, Popović Bijelić A. Spectroscopic Characterization of the Binding and Release of Hydrophilic, Hydrophobic and Amphiphilic Molecules from Ovalbumin Supramolecular Hydrogels. Gels 2022; 9:14. [PMID: 36661784 PMCID: PMC9857392 DOI: 10.3390/gels9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Protein-based hydrogels have attracted growing attention for pharmaceutical and biomedical applications. Ovalbumin (OVA), the hen egg white albumin, possessing good foaming and gelling properties and being widely used in the food industry, has recently been indicated as a potential pharmaceutical vehicle. In this study, the binding and release properties of pure OVA hydrogels were investigated by electron paramagnetic resonance (EPR) spin labeling. The comparative analysis between OVA and serum albumin (SA) hydrogels revealed the same release kinetics of hydrophilic 3-carbamoyl-proxyl and 3-carboxy-proxyl, suggesting the diffusion-dominated release of small probes from both hydrogel types. The results obtained with the amphiphilic 16-doxylstearate (16-DS) indicate that OVA, unlike SAs, does not possess a specific fatty acid binding site. However, the OVA hydrogels were able to accommodate a two-fold excess of 16-DS, resulting from protein thermally induced conformational changes, as confirmed by Raman spectroscopy. Similarly, the hydrophobic modified paullone ligand HL, which was initially free in the OVA solution, was bound in the hydrogel. The hydrogels were found to retain a significant amount of 16-DS and HL after 7-day dialysis in physiological saline. The observed facilitated binding of amphiphilic/hydrophobic molecules in OVA hydrogels compared to the solution, and their sustained release, demonstrate the applicability of OVA hydrogels in pharmaceutics.
Collapse
Affiliation(s)
- Ana Vesković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Ana Popović Bijelić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|