1
|
Tian Z, Zhao Z, Rausch MA, Behm C, Tur D, Shokoohi-Tabrizi HA, Andrukhov O, Rausch-Fan X. Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study. Int J Mol Sci 2025; 26:672. [PMID: 39859386 PMCID: PMC11766300 DOI: 10.3390/ijms26020672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM). Cells were cultured onto the GPP, VSCM, or tissue culture plate (TCP) for 3, 7, and 14 days. Cell morphology, adhesion, proliferation/viability, the gene expression of Collagen type I, alpha1 (COL1A1), Vascular endothelial growth factor A (VEGF-A), Periostin (POSTN), Cementum protein 1 (CEMP1), Cementum attachment protein (CAP), Interleukin 8 (IL-8) and Osteocalcin (OCN), and the levels of VEGF-A and IL-8 proteins were investigated. hPDL-MSCs attached to both biomaterials exhibited a different morphology compared to TCP. GPP exhibited stronger capabilities in enhancing cell viability and metabolic activity compared to VSCM. In most cases, the expression of all investigated genes, except POSTN, was stimulated by both materials, with GPP having a superior effect on COL1A1 and VEGF-A, and VSCM on OCN. The IL-8 protein production was slightly higher in cells grown on VSCM. GPP also exhibited the ability to absorb VEGF-A protein. The gene expression of POSTN was promoted by GPP and slightly suppressed by VSCM. In summary, our findings indicate that GPP electrospun nanofibers effectively promote the functional performance of PDLSCs in periodontal regeneration, particularly in the periodontal ligament and cementum compartment.
Collapse
Affiliation(s)
- Zhiwei Tian
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.T.); (M.A.R.); (C.B.)
| | - Zhongqi Zhao
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.T.); (M.A.R.); (C.B.)
| | - Marco Aoqi Rausch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.T.); (M.A.R.); (C.B.)
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.T.); (M.A.R.); (C.B.)
| | - Dino Tur
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (X.R.-F.)
| | - Hassan Ali Shokoohi-Tabrizi
- Core Facility Applied Physics, Laser and CAD/CAM Technology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.T.); (M.A.R.); (C.B.)
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (D.T.); (X.R.-F.)
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Santos MS, Silva JC, Carvalho MS. Hierarchical Biomaterial Scaffolds for Periodontal Tissue Engineering: Recent Progress and Current Challenges. Int J Mol Sci 2024; 25:8562. [PMID: 39201249 PMCID: PMC11354458 DOI: 10.3390/ijms25168562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
The periodontium is a complex hierarchical structure composed of alveolar bone, periodontal ligament, cementum, and gingiva. Periodontitis is an inflammatory disease that damages and destroys the periodontal tissues supporting the tooth. Periodontal therapies aim to regenerate the lost tissues, yet current treatments lack the integration of multiple structural/biochemical instructive cues to induce a coordinated regeneration, which leads to limited clinical outcomes. Hierarchical biomaterial scaffolds offer the opportunity to recreate the organization and architecture of the periodontium with distinct compartments, providing structural biomimicry that facilitates periodontal regeneration. Various scaffolds have been fabricated and tested preclinically, showing positive regenerative results. This review provides an overview of the recent research on hierarchical scaffolds for periodontal tissue engineering (TE). First, the hierarchical structure of the periodontium is described, covering the limitations of the current treatments used for periodontal regeneration and presenting alternative therapeutic strategies, including scaffolds and biochemical factors. Recent research regarding hierarchical scaffolds is highlighted and discussed, in particular, the scaffold composition, fabrication methods, and results from in vitro/in vivo studies are summarized. Finally, current challenges associated with the application of hierarchical scaffolds for periodontal TE are debated and future research directions are proposed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Abraham S, Gupta P, Govarthanan K, Rao S, Santra TS. Direction-oriented fiber guiding with a tunable tri-layer-3D scaffold for periodontal regeneration. RSC Adv 2024; 14:19806-19822. [PMID: 38899033 PMCID: PMC11186324 DOI: 10.1039/d4ra01459f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Multilayered scaffolds mimicking mechanical and biological host tissue architectures are the current prerequisites for successful tissue regeneration. We propose our tunable tri-layered scaffold, designed to represent the native periodontium for potential regenerative applications. The fused deposition modeling platform is used to fabricate the novel movable three-layered polylactic acid scaffold mimicking in vivo cementum, periodontal ligament, and alveolar bone layers. The scaffold is further provided with multiple angulated fibers, offering directional guidance and facilitating the anchorage dependence on cell adhesion. Additionally, surface modifications of the scaffold were made by incorporating coatings like collagen and different concentrations of gelatin methacryloyl to enrich the cell adhesion and proliferation. The surface characterization of our designed scaffolds was performed using tribological studies, atomic force microscopy, contact angle measurement, scanning electron microscopy, and micro-computed tomography. Furthermore, the material characterization of this scaffold was investigated by attenuated total reflectance-Fourier transformed infrared spectroscopy. The scaffold's mechanical characterization, such as strength and compression modulus, was demonstrated by compression testing. The L929 mouse fibroblast cells and MG63 human osteosarcoma cells have been cultured on the scaffold. The scaffold's superior biocompatibility was evaluated using fluorescence dye with fluorescence microscopy, scanning electron microscopy, in vitro wound healing assay, MTT assay, and flow cytometry. The mineralization capability of the scaffolds was also studied. In conclusion, our study demonstrated the construction of a multilayered movable scaffold, which is highly biocompatible and most suitable for various downstream applications such as periodontium and in situ tissue regeneration of complex, multilayered tissues.
Collapse
Affiliation(s)
- Sarin Abraham
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| | - Kavitha Govarthanan
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bengaluru Karnataka 560065 India
| | - Suresh Rao
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
4
|
Younes HM, Kadavil H, Ismail HM, Adib SA, Zamani S, Alany RG, Al-Kinani AA. Overview of Tissue Engineering and Drug Delivery Applications of Reactive Electrospinning and Crosslinking Techniques of Polymeric Nanofibers with Highlights on Their Biocompatibility Testing and Regulatory Aspects. Pharmaceutics 2023; 16:32. [PMID: 38258043 PMCID: PMC10818558 DOI: 10.3390/pharmaceutics16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Traditional electrospinning is a promising technique for fabricating nanofibers for tissue engineering and drug delivery applications. The method is highly efficient in producing nanofibers with morphology and porosity similar to the extracellular matrix. Nonetheless, and in many instances, the process has faced several limitations, including weak mechanical strength, large diameter distributions, and scaling-up difficulties of its fabricated electrospun nanofibers. The constraints of the polymer solution's intrinsic properties are primarily responsible for these limitations. Reactive electrospinning constitutes a novel and modified electrospinning techniques developed to overcome those challenges and improve the properties of the fabricated fibers intended for various biomedical applications. This review mainly addresses reactive electrospinning techniques, a relatively new approach for making in situ or post-crosslinked nanofibers. It provides an overview of and discusses the recent literature about chemical and photoreactive electrospinning, their various techniques, their biomedical applications, and FDA regulatory aspects related to their approval and marketing. Another aspect highlighted in this review is the use of crosslinking and reactive electrospinning techniques to enhance the fabricated nanofibers' physicochemical and mechanical properties and make them more biocompatible and tailored for advanced intelligent drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Husam M. Younes
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Hana Kadavil
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Hesham M. Ismail
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
- Charles River Laboratories, Montreal, QC H9X 3R3, Canada
| | - Sandi Ali Adib
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Somayeh Zamani
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
- Materials Science & Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Raid G. Alany
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand; (R.G.A.); (A.A.A.-K.)
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London KT2 7LB, UK
| | - Ali A. Al-Kinani
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand; (R.G.A.); (A.A.A.-K.)
| |
Collapse
|
5
|
Santos MS, Carvalho MS, Silva JC. Recent Advances on Electrospun Nanofibers for Periodontal Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1307. [PMID: 37110894 PMCID: PMC10141626 DOI: 10.3390/nano13081307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Periodontitis is an inflammatory infection caused by bacterial plaque accumulation that affects the periodontal tissues. Current treatments lack bioactive signals to induce tissue repair and coordinated regeneration of the periodontium, thus alternative strategies are needed to improve clinical outcomes. Electrospun nanofibers present high porosity and surface area and are able to mimic the natural extracellular matrix, which modulates cell attachment, migration, proliferation, and differentiation. Recently, several electrospun nanofibrous membranes have been fabricated with antibacterial, anti-inflammatory, and osteogenic properties, showing promising results for periodontal regeneration. Thus, this review aims to provide an overview of the current state of the art of these nanofibrous scaffolds in periodontal regeneration strategies. First, we describe the periodontal tissues and periodontitis, as well as the currently available treatments. Next, periodontal tissue engineering (TE) strategies, as promising alternatives to the current treatments, are addressed. Electrospinning is briefly explained, the characteristics of electrospun nanofibrous scaffolds are highlighted, and a detailed overview of electrospun nanofibers applied to periodontal TE is provided. Finally, current limitations and possible future developments of electrospun nanofibrous scaffolds for periodontitis treatment are also discussed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
6
|
Rashid AB, Showva NN, Hoque ME. Gelatin-Based Scaffolds – An Intuitive Support Structure for Regenerative Therapy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Nanotechnology in tissue engineering and regenerative medicine. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Nanomaterials in Scaffolds for Periodontal Tissue Engineering: Frontiers and Prospects. Bioengineering (Basel) 2022; 9:bioengineering9090431. [PMID: 36134977 PMCID: PMC9495816 DOI: 10.3390/bioengineering9090431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
The regeneration of periodontium represents important challenges to controlling infection and achieving functional regeneration. It has been recognized that tissue engineering plays a vital role in the treatment of periodontal defects, profiting from scaffolds that create the right microenvironment and deliver signaling molecules. Attributable to the excellent physicochemical and antibacterial properties, nanomaterials show great potential in stimulating tissue regeneration in tissue engineering. This article reviewed the up-to-date development of nanomaterials in scaffolds for periodontal tissue engineering. The paper also represented the merits and defects of different materials, among which the biocompatibility, antibacterial properties, and regeneration ability were discussed in detail. To optimize the project of choosing materials and furthermore lay the foundation for constructing a series of periodontal tissue engineering scaffolds, various nanomaterials and their applications in periodontal regeneration were introduced.
Collapse
|
9
|
Electrospun Materials for Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14081556. [PMID: 35893812 PMCID: PMC9394412 DOI: 10.3390/pharmaceutics14081556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
|