1
|
Kondo N, Kato M, Oshima A, Hirano F, Miyazaki A, Temma T. Radioiodinated Bicyclic RGD Peptide Derivatives for Enhanced Tumor Accumulation. Pharmaceuticals (Basel) 2025; 18:549. [PMID: 40283983 PMCID: PMC12030627 DOI: 10.3390/ph18040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Integrin αVβ3 plays a crucial role in tumor angiogenesis and cancer progression, making it a key target for radiolabeled probes used in imaging and therapy. A previously developed probe, [125I]bcRGD, exhibited high selectivity for αVβ3 but limited tumor accumulation due to rapid blood clearance. This study aimed to address this issue through two strategies: (1) conjugating albumin-binding molecules to enhance systemic circulation and (2) dimerizing RGD peptides to improve binding affinity via multivalency effects. Methods: Three [125I]bcRGD derivatives were synthesized: [125I]bcRGDpal (with palmitic acid), [125I]bcRGDiba (with 4-(p-iodophenyl)butyric acid), and [125I]bcRGDdimer (a dimeric bicyclic RGD peptide). Their physicochemical properties, αVβ3-selectivity, albumin-binding capacity, and biodistribution were assessed in vitro and in vivo using tumor-bearing mice. Tumor models included αVβ3-high U-87 MG and αVβ3-low A549 xenografts. Results: [125I]bcRGDpal and [125I]bcRGDiba exhibited prolonged blood retention (30-fold and 55-fold vs. [125I]bcRGD, respectively) and increased tumor accumulation (3.9% ID/g and 3.6% ID/g at 2 h, respectively). Despite improved systemic circulation, tumor-to-blood ratios remained low (<1), indicating limited tumor retention. [125I]bcRGDdimer achieved significantly greater tumor accumulation (4.2% ID/g at 2 h) and favorable tumor-to-blood (22) and tumor-to-muscle (14) ratios, with a 5.4-fold higher uptake in U-87 MG tumors compared to A549 tumors. Conclusions: Dimerization was more effective than albumin binding in enhancing bcRGD's tumor-targeting potential. The dimeric probe demonstrated improved tumor accumulation, favorable pharmacokinetics, and preserved integrin selectivity. These findings provide a foundation for further structural optimization of bicyclic RGD peptides for integrin αVβ3-targeted imaging and therapy applications.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (A.M.)
- Division of Fundamental Technology Development, Near InfraRed Photo-ImmunoTherapy Institute, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Osaka, Japan
| | - Marika Kato
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (A.M.)
| | - Aoi Oshima
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (A.M.)
| | - Fuko Hirano
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (A.M.)
| | - Anna Miyazaki
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (A.M.)
| | - Takashi Temma
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (A.M.)
| |
Collapse
|
2
|
Sui H, Guo F, Liu H, Wang R, Li L, Wang J, Jia C, Xiang J, Liang Y, Chen X, Zhu Z, Wang F. Safety, pharmacokinetics, and dosimetry of 177Lu-AB-3PRGD2 in patients with advanced integrin α v β 3-positive tumors: A first-in-human study. Acta Pharm Sin B 2025; 15:669-680. [PMID: 40177543 PMCID: PMC11959955 DOI: 10.1016/j.apsb.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 04/05/2025] Open
Abstract
Integrin α v β 3 is overexpressed in various tumor cells and angiogenesis. To date, no drug has been proven to target it for therapy. A first-in-human study was designed to investigate the safety, pharmacokinetics, and dosimetry of 177Lu-AB-3PRGD2, a novel integrin α v β 3-targeting radionuclide drug with an albumin-binding motif to optimize the pharmacokinetics. Ten patients (3 men, 7 women; aged 45 ± 16 years) with integrin α v β 3-avid tumors were recruited to accept 177Lu-AB-3PRGD2 injection in a dosage of 1.57 ± 0.08 GBq (42.32 ± 2.11 mCi), followed by serial scans to obtain its dynamic distribution in the body. Safety tests were performed before and every 2 weeks after the treatment for 6-8 weeks. No adverse event over grade 3 was observed. 177Lu-AB-3PRGD2 was excreted mainly through the urinary system, with intense radioactivity in the kidneys and bladder. Moderate distribution was found in the liver, spleen, and intestines. The estimated blood half-life was 2.85 ± 2.17 h. The whole-body effective dose was 0.251 ± 0.047 mSv/MBq. The absorbed doses were 0.157 ± 0.032 mGy/MBq in red bone marrow and 0.684 ± 0.132 mGy/MBq in kidneys. This first-in-human study of 177Lu-AB-3PRGD2 treatment indicates its promising potential for targeted radionuclide therapy of integrin α v β 3-avid tumors. It merits further studies in more patients with escalating doses and multiple treatment courses.
Collapse
Affiliation(s)
- Huimin Sui
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Feng Guo
- Department of Nuclear Medicine, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hongfei Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Linlin Li
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Jiarou Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Chenhao Jia
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Jialin Xiang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yingkui Liang
- Department of Nuclear Medicine, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xiaohong Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Zhang J, Kang F, Wang X, Chen X, Yang X, Yang Z, Wang J. Recent Advances in Radiotracers Targeting Novel Cancer-Specific Biomarkers in China: A Brief Overview. J Nucl Med 2024; 65:38S-45S. [PMID: 38719241 DOI: 10.2967/jnumed.123.266314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Indexed: 07/16/2024] Open
Abstract
Radiopharmaceuticals play a critical role in nuclear medicine, providing novel tools for specifically delivering radioisotopes for the diagnosis and treatment of cancers. As the starting point for developing radiopharmaceuticals, cancer-specific biomarkers are important and receive worldwide attention. This field in China is currently experiencing a rapid expansion, with multiple radiotracers targeting novel targets being developed and translated into clinical studies. This review provides a brief overview of the exploration of novel imaging targets, preclinical evaluation of their targeting ligands, and translational research in China from 2020 to 2023, for detecting cancer, guiding targeted therapy, and visualizing the immune microenvironment. We believe that China will play an even more important role in the development of nuclear medicine in the world in the future.
Collapse
Affiliation(s)
- Jingming Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Nuclear Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fei Kang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xuejiao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China
- International Cancer Institute, Peking University Health Science Center, Beijing, China; and
| | - Zhi Yang
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China;
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China;
| |
Collapse
|
4
|
Khalil A, Hakhverdyan S, Cheung P, Bossart M, Wagner M, Eriksson O, Velikyan I. Introduction of a fatty acid chain modification to prolong circulatory half-life of a radioligand towards glucose-dependent insulinotropic polypeptide receptor. Nucl Med Biol 2024; 128-129:108876. [PMID: 38241936 DOI: 10.1016/j.nucmedbio.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND The beneficial role of glucose-dependent insulinotropic polypeptide receptor (GIPR) in weight control and maintaining glucose levels has led to the development of several multi-agonistic peptide drug candidates, targeting GIPR and glucagon like peptide 1 receptor (GLP1R) and/or the glucagon receptor (GCGR). The in vivo quantification of target occupancy by these drugs would accelerate the development of new drug candidates. The aim of this study was to evaluate a novel peptide (GIP1234), based on previously reported ligand DOTA-GIP-C803, modified with a fatty acid moiety to prolong its blood circulation. It would allow higher target tissue exposure and consequently improved peptide uptake as well as in vivo PET imaging and quantification of GIPR occupancy by novel drugs of interest. METHOD A 40 amino acid residue peptide (GIP1234) was synthesized based on DOTA-GIP-C803, in turn based on the sequences of endogenous GIP and Exendin-4 with specific amino acid modifications to obtain GIPR selectivity. A palmitoyl fatty acid chain was furthermore added at Lys14 via a glutamic acid linker to prolong its blood circulation time by the interaction with albumin. GIP1234 was conjugated with a DOTA chelator at the C-terminal cysteine residue to achieve 68Ga radiolabeling. The resulting PET probe, [68Ga]Ga-DOTA-GIP1234 was evaluated for receptor binding specificity and selectivity using HEK293 cells transfected with human GIPR, GLP1R, or GCGR. Blocking experiments with tirzepatide (2 μM) were conducted using huGIPR HEK293 cells to investigate binding specificity. Ex vivo and in vivo organ distribution of [68Ga]Ga-DOTA-GIP1234 was studied in rats and a pig in comparison to [68Ga]Ga-DOTA-C803-GIP. Binding of [68Ga]Ga-DOTA-GIP1234 to albumin was assessed in situ using polyacrylamide gel electrophoresis (PAGE). The stability was tested in formulation buffer and rat blood plasma. RESULTS [68Ga]Ga-DOTA-GIP1234 was synthesized with non-decay corrected radiochemical yield of 88 ± 3.7 % and radiochemical purity of 97.8 ± 0.8 %. The molar activity for the radiotracer was 8.1 ± 1.1 MBq/nmol. [68Ga]Ga-DOTA-GIP1234 was stable and maintained affinity to huGIPR HEK293 cells (dissociation constant (Kd) = 40 ± 12.5 nM). The binding of [68Ga]Ga-DOTA-GIP1234 to huGCGR and huGLP1R cells was insignificant. Pre-incubation of huGIPR HEK293 cell sections with tirzepatide resulted in the decrease of [68Ga]Ga-DOTA-GIP1234 binding by close to 90 %. [68Ga]Ga-DOTA-GIP1234 displayed slow blood clearance in pigs with SUV = 3.5 after 60 min. Blood retention of the tracer in rat was 2-fold higher than that of [68Ga]Ga-DOTA-C803-GIP. [68Ga]Ga-DOTA-GIP1234 also demonstrated strong liver uptake in both pig and rat combined with decreased renal excretion. The concentration dependent binding of [68Ga]Ga-DOTA-GIP1234 to albumin was confirmed in situ by PAGE. CONCLUSION [68Ga]Ga-DOTA-GIP1234 demonstrated nanomolar affinity and selectivity for huGIPR in vitro. Addition of a fatty acid moiety prolonged blood circulation time and tissue exposure in both rat and pig in vivo. However, the liver uptake was also increased which may make PET imaging of abdominal tissues such as pancreas challenging. The investigation of the influence of fatty acid moiety on the biological performance of the peptide ligand paved the way for further rational design of GIPR ligand analogues with improved characteristics.
Collapse
Affiliation(s)
- Amina Khalil
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Sona Hakhverdyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Martin Bossart
- R&D Research Platform, Integrated Drug Discovery, Sanofi, Frankfurt, Germany
| | - Michael Wagner
- R&D Research Platform, Integrated Drug Discovery, Sanofi, Frankfurt, Germany; Current address: Dewpoint Therapeutics, Frankfurt, Germany
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; Antaros Medical AB, Mölndal, Sweden; Antaros Tracer AB, Mölndal, Sweden.
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; Department of Surgical Sciences, Radiology, Uppsala University Uppsala, Sweden.
| |
Collapse
|
5
|
Echigo H, Mishiro K, Munekane M, Fuchigami T, Washiyama K, Takahashi K, Kitamura Y, Wakabayashi H, Kinuya S, Ogawa K. Development of probes for radiotheranostics with albumin binding moiety to increase the therapeutic effects of astatine-211 ( 211At). Eur J Nucl Med Mol Imaging 2024; 51:412-421. [PMID: 37819452 DOI: 10.1007/s00259-023-06457-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE We have developed probes for multiradionuclides radiotheranostics using RGD peptide ([67Ga]Ga-DOTA-c[RGDf(4-I)K] ([67Ga]1) and Ga-DOTA-[211At]c[RGDf(4-At)K] ([211At]2)) for clinical applications. The introduction of an albumin binding moiety (ABM), such as 4-(4-iodophenyl)-butyric acid (IPBA), that has high affinity with the blood albumin and prolongs the circulation half-life can improve the pharmacokinetics of drugs. To perform more effective targeted alpha therapy (TAT), we designed and synthesized Ga-DOTA-K([211At]APBA)-c(RGDfK) ([211At]5) with 4-(4-astatophenyl)-butyric acid (APBA), which has an astato group instead of an iodo group in IPBA. We evaluated whether APBA functions as ABM and [211At]5 is effective for TAT. In addition, we prepared 67Ga-labeled RGD peptide without ABM, [67Ga]Ga-DOTA-K-c(RGDfK) ([67Ga]3), and 125I-labeled RGD peptide with ABM, Ga-DOTA-K([125I]IPBA)-c(RGDfK) ([125I]4), to compare with [211At]5. METHODS Biodistribution experiments of [67Ga]3 without ABM, [125I]4 and [211At]5 with ABM were conducted in normal mice and U-87 MG tumor-bearing mice. In addition, two doses of [211At]5 (370 or 925 kBq) were administered to U-87 MG tumor-bearing mice to confirm the therapeutic effects. RESULTS The blood retention of [125I]4 and [211At]5 was remarkably increased compared to [67Ga]3. Also, [125I]4 and [211At]5 showed similar biodistribution and significantly greater tumor accumulation and retention compared to [67Ga]3. In addition, [211At]5 inhibited tumor growth in a dose-dependent manner. CONCLUSION The functionality of APBA as ABM like IPBA, and the usefulness of [211At]5 as the radionuclide therapy agent for TAT was revealed.
Collapse
Affiliation(s)
- Hiroaki Echigo
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|