1
|
Camargo-Ayala L, Bedoya M, Dasí A, Prüser M, Schütte S, Prent-Peñaloza L, Adasme-Carreño F, Kiper AK, Rinné S, Camargo-Ayala PA, Peña-Martínez PA, Bueno-Orovio A, Varela D, Wiedmann F, Márquez Montesinos JCE, Mazola Y, Venturini W, Zúñiga R, Zúñiga L, Schmidt C, Rodriguez B, Ravens U, Decher N, Gutiérrez M, González W. Rational design, synthesis, and evaluation of novel polypharmacological compounds targeting Na V1.5, K V1.5, and K 2P channels for atrial fibrillation. J Biol Chem 2025; 301:108387. [PMID: 40054693 DOI: 10.1016/j.jbc.2025.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 04/19/2025] Open
Abstract
Atrial fibrillation (AF) involves electrical remodeling of the atria, with ion channels such as NaV1.5, KV1.5, and TASK-1 playing crucial roles. This study investigates acetamide-based compounds designed as multi-target inhibitors of these ion channels to address AF. Compound 6f emerged as the most potent in the series, demonstrating a strong inhibition of TASK-1 (IC50 ∼ 0.3 μM), a moderate inhibition of NaV1.5 (IC50 ∼ 21.2 μM) and a subtle inhibition of KV1.5 (IC50 ∼ 81.5 μM), alongside unexpected activation of TASK-4 (∼ 40% at 100 μM). Functional assays on human atrial cardiomyocytes from sinus rhythm (SR) and patients with AF revealed that 6f reduced action potential amplitude in SR (indicating NaV1.5 block), while in AF it increased action potential duration (APD), reflecting high affinity for TASK-1. Additionally, 6f caused hyperpolarization of the resting membrane potential in AF cardiomyocytes, consistent with the observed TASK-4 activation. Mathematical modeling further validated its efficacy in reducing AF burden. Pharmacokinetic analyses suggest favorable absorption and low toxicity. These findings identify 6f as a promising multi-target therapeutic candidate for AF management.
Collapse
Affiliation(s)
- Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica, Universidad de Talca, Talca, Chile
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Albert Dasí
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Merten Prüser
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Sven Schütte
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Luis Prent-Peñaloza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Viña del Mar, Chile
| | - Francisco Adasme-Carreño
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany; Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Paola Andrea Camargo-Ayala
- Doctorado en Ciencias Biomédicas, Laboratorio de Patología Molecular, Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Paula A Peña-Martínez
- Doctorado en Ciencias Agrarias, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile; Laboratorio de Química Enológica, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Diego Varela
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile; Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - José C E Márquez Montesinos
- Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile; Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Yuliet Mazola
- Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile; Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Whitney Venturini
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Rafael Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Leandro Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Ursula Ravens
- German Atrial Fibrillation Competence NETwork (AFNET), Freiburg, Germany; Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, Freiburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany.
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile.
| | - Wendy González
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile; Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile.
| |
Collapse
|
2
|
Gu Y, Wang J, Li M, Zhong F, Xiang J, Xu Z. Inhibitory Effects of Nobiletin on Voltage-Gated Na + Channel in Rat Ventricular Myocytes Based on Electrophysiological Analysis and Molecular Docking Method. Int J Mol Sci 2022; 23:ijms232315175. [PMID: 36499507 PMCID: PMC9736168 DOI: 10.3390/ijms232315175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Nobiletin (NOB) has attracted much attention owing to its outstanding bioactivities. This study aimed to investigate its anti-arrhythmic effect through electrophysiological and molecular docking studies. We assessed the anti-arrhythmic effects of NOB using aconitine-induced ventricular arrhythmia in a rat model and the electrophysiological effects of NOB on rat cardiomyocytes utilizing whole-cell patch-clamp techniques. Moreover, we investigated the binding characters of NOB with rNav1.5, rNav1.5/QQQ, and hNaV1.5 via docking analysis, comparing them with amiodarone and aconitine. NOB pretreatment delayed susceptibility to ventricular premature and ventricular tachycardia and decreased the incidence of fatal ventricular fibrillation. Whole-cell patch-clamp assays demonstrated that the peak current density of the voltage-gated Na+ channel current was reversibly reduced by NOB in a concentration-dependent manner. The steady-state activation and recovery curves were shifted in the positive direction along the voltage axis, and the steady-state inactivation curve was shifted in the negative direction along the voltage axis, as shown by gating kinetics. The molecular docking study showed NOB formed a π-π stacking interaction with rNav1.5 and rNav1.5/QQQ upon Phe-1762, which is the homolog to Phe-1760 in hNaV1.5 and plays an important role in antiarrhythmic action This study reveals that NOB may act as a class I sodium channel anti-arrhythmia agent.
Collapse
Affiliation(s)
- Youwei Gu
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jieru Wang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mengting Li
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Fei Zhong
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jie Xiang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.X.); (J.X.)
| | - Zhengxin Xu
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jingsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225009, China
- Yeda Institute of Gene and Cell Therapy, Taizhou 318000, China
- Correspondence: (Z.X.); (J.X.)
| |
Collapse
|
3
|
Zhorov BS, Dong K. Pyrethroids in an AlphaFold2 Model of the Insect Sodium Channel. INSECTS 2022; 13:745. [PMID: 36005370 PMCID: PMC9409284 DOI: 10.3390/insects13080745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Pyrethroid insecticides stabilize the open state of insect sodium channels. Previous mutational, electrophysiological, and computational analyses led to the development of homology models predicting two pyrethroid receptor sites, PyR1 and PyR2. Many of the naturally occurring sodium channel mutations, which confer knockdown resistance (kdr) to pyrethroids, are located within or close to these receptor sites, indicating that these mutations impair pyrethroid binding. However, the mechanism of the state-dependent action of pyrethroids and the mechanisms by which kdr mutations beyond the receptor sites confer resistance remain unclear. Recent advances in protein structure prediction using the AlphaFold2 (AF2) neural network allowed us to generate a new model of the mosquito sodium channel AaNav1-1, with the activated voltage-sensing domains (VSMs) and the presumably inactivated pore domain (PM). We further employed Monte Carlo energy minimizations to open PM and deactivate VSM-I and VSM-II to generate additional models. The docking of a Type II pyrethroid deltamethrin in the models predicted its interactions with many known pyrethroid-sensing residues in the PyR1 and PyR2 sites and revealed ligand-channel interactions that stabilized the open PM and activated VSMs. Our study confirms the predicted two pyrethroid receptor sites, explains the state-dependent action of pyrethroids, and proposes the mechanisms of the allosteric effects of various kdr mutations on pyrethroid action. The AF2-based models may assist in the structure-based design of new insecticides.
Collapse
Affiliation(s)
- Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|