1
|
Khan MA, Mousa AM, Alradhi AE, Allemailem K. Efficacy of lipid nanoparticles-based vaccine to protect against vulvovaginal candidiasis (VVC): Implications for women's reproductive health. Life Sci 2025; 361:123312. [PMID: 39674269 DOI: 10.1016/j.lfs.2024.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
AIMS Vulvovaginal candidiasis (VVC) is a common women's health issue, with rising antifungal resistance. This study was aimed to prepare and evaluate the efficacy of a lipid nanoparticle-based vaccine in a murine model of VVC. MATERIALS AND METHODS Dried and reconstituted vesicles containing C. albicans antigens (DRNPs-Ca-Ags) vaccine, formulated with phosphatidylcholine and cholesterol-based lipid nanoparticles via film hydration and freeze-drying. The safety evaluation of DRNPs-CaAgs was conducted by determining hepatic (AST, ALT) or renal (BUN, creatinine) biomarkers. Female mice were immunized with DRNPs-CaAgs or Alum-CaAgs, and immune responses were evaluated via antibody titers, IgG isotypes, and splenocyte proliferation. Protective efficacy of vaccine formulations was assessed through fungal burden, biofilm formation, cytokine levels, and histopathological analysis of vaginal tissues. KEY FINDINGS Mice vaccinated with DRNPs-CaAgs showed significantly enhanced immune responses, with higher antibody titers and IgG2a levels as compared to the Alum-CaAgs group. Vaginal fungal burden was dramatically reduced (665 ± 78 CFUs in DRNPs-CaAgs immunized group vs. 12,944 ± 3540 CFUs in Alum-CaAgs group, p < 0.01). Biofilm formation decreased by 45 % (p < 0.05), and inflammatory cytokines were significantly lowered. Histopathological analysis revealed minimal tissue damage in DRNPs-CaAgs vaccinated mice. SIGNIFICANCE The findings suggest DRNPs-CaAgs as a promising vaccine for VVC, eliciting strong immunity, reducing fungal load, and minimizing inflammation. While the reliance on a murine model is a limitation, future clinical trials are essential to evaluate its efficacy and safety in humans, offering a potential strategy to combat drug-resistant infections and improve women's reproductive health.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Khaled Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
2
|
Xu Y, Zhu F, Zhou Z, Ma S, Zhang P, Tan C, Luo Y, Qin R, Chen J, Pan P. A novel mRNA multi-epitope vaccine of Acinetobacter baumannii based on multi-target protein design in immunoinformatic approach. BMC Genomics 2024; 25:791. [PMID: 39160492 PMCID: PMC11334330 DOI: 10.1186/s12864-024-10691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Acinetobacter baumannii is a gram-negative bacillus prevalent in nature, capable of thriving under various environmental conditions. As an opportunistic pathogen, it frequently causes nosocomial infections such as urinary tract infections, bacteremia, and pneumonia, contributing to increased morbidity and mortality in clinical settings. Consequently, developing novel vaccines against Acinetobacter baumannii is of utmost importance. In our study, we identified 10 highly conserved antigenic proteins from the NCBI and UniProt databases for epitope mapping. We subsequently screened and selected 8 CTL, HTL, and LBL epitopes, integrating them into three distinct vaccines constructed with adjuvants. Following comprehensive evaluations of immunological and physicochemical parameters, we conducted molecular docking and molecular dynamics simulations to assess the efficacy and stability of these vaccines. Our findings indicate that all three multi-epitope mRNA vaccines designed against Acinetobacter baumannii are promising; however, further animal studies are required to confirm their reliability and effectiveness.
Collapse
Affiliation(s)
- Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Caixia Tan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rongliu Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Li J, Lu Z, Wang L, Shi H, Chu B, Qu Y, Ye Z, Qu D. Novel Coumarins Derivatives for A. baumannii Lung Infection Developed by High-Throughput Screening and Reinforcement Learning. J Neuroimmune Pharmacol 2024; 19:32. [PMID: 38886254 PMCID: PMC11182843 DOI: 10.1007/s11481-024-10134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
With the increasing resistance of Acinetobacter baumannii (A. baumannii) to antibiotics, researchers have turned their attention to the development of new antimicrobial agents. Among them, coumarin-based heterocycles have attracted much attention due to their unique biological activities, especially in the field of antibacterial infection. In this study, a series of coumarin derivatives were synthesized and screened for their bactericidal activities (Ren et al. 2018; Salehian et al. 2021). The inhibitory activities of these compounds on bacterial strains were evaluated, and the related mechanism of the new compounds was explored. Firstly, the MIC values and bacterial growth curves were measured after compound treatment to evaluate the antibacterial activity in vitro. Then, the in vivo antibacterial activities of the new compounds were assessed on A. baumannii-infected mice by determining the mice survival rates, counting bacterial CFU numbers, measuring inflammatory cytokine levels, and histopathology analysis. In addition, the ROS levels in the bacterial cells were measured with DCFH-DA detection kit. Furthermore, the potential target and detailed mechanism of the new compounds during infection disease therapy were predicted and evidenced with molecular docking. After that, ADMET characteristic prediction was completed, and novel, synthesizable, drug-effective molecules were optimized with reinforcement learning study based on the probed compound as a training template. The interaction between the selected structures and target proteins was further evidenced with molecular docking. This series of innovative studies provides important theoretical and experimental data for the development of new anti-A. baumannii infection drugs.
Collapse
Affiliation(s)
- Jing Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shanxi, China
| | - Zhou Lu
- Department of Health Service, Medical Service Training Base, The Fourth Military Medical University, Xi'an, Shanxi, China
| | - Liuchang Wang
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shanxi, China
| | - Huiqing Shi
- Department of Clinical Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Bixin Chu
- Department of Clinical Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yingwei Qu
- Department of Burn and Plastic Surgery, Zibo Prevention and Treatment Hospital for Occupation Diseases, Zibo, Shandong, China
| | - Zichen Ye
- Department of Health Service, Medical Service Training Base, The Fourth Military Medical University, Xi'an, Shanxi, China.
| | - Di Qu
- Department of Clinical Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, China.
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China.
| |
Collapse
|
4
|
Hu Y, Zhang X, Deng S, Yue C, Jia X, Lyu Y. Non-antibiotic prevention and treatment against Acinetobacter baumannii infection: Are vaccines and adjuvants effective strategies? Front Microbiol 2023; 14:1049917. [PMID: 36760499 PMCID: PMC9905804 DOI: 10.3389/fmicb.2023.1049917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a Gram-negative opportunistic pathogen widely attached to the surface of medical instruments, making it one of the most common pathogens of nosocomial infection, and often leading to cross-infection and co-infection. Due to the extensive antibiotic and pan-resistance, A. baumannii infection is facing fewer treatment options in the clinic. Therefore, the prevention and treatment of A. baumannii infection have become a tricky global problem. The requirement for research and development of the new strategy is urgent. Now, non-antibiotic treatment strategies are urgently needed. This review describes the research on A. baumannii vaccines and antibacterial adjuvants, discusses the advantages and disadvantages of different candidate vaccines tested in vitro and in vivo, especially subunit protein vaccines, and shows the antibacterial efficacy of adjuvant drugs in monotherapy.
Collapse
Affiliation(s)
- Yue Hu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xianqin Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shanshan Deng
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Changwu Yue
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,*Correspondence: Changwu Yue ✉
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China,Xu Jia ✉
| | - Yuhong Lyu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,Yuhong Lyu ✉
| |
Collapse
|