1
|
Lura V, Lura A, Breitkreutz J, Klingmann V. The revival of the mini-tablets: Recent advancements, classifications and expectations for the future. Eur J Pharm Biopharm 2025; 210:114655. [PMID: 39922507 DOI: 10.1016/j.ejpb.2025.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Mini-tablets have recently raised huge interest in pharmaceutical industry. The present review aims to identify the rational, the opportunities and challenges of this emerging small solid drug dosage form by a structured literature review following the PRISMA algorithm. In total, more than 5,000 literature and patent sources have been found starting with the very first in the 60s of the past century, followed by the first multiparticular products using mini-tablets with pancreatin (Panzytrat® by the former BASF subsidiary Knoll/Nordmark) authorized in 1985. There seems to be a second boost of common interest in the 2000s when clinical studies demonstrated that one or more mini-tablets could enable superior drug administration even in very young patients including neonates over the former gold standard, a liquid drug preparation. Several pharmaceutical companies immediately started clinical development programs using the mini-tablet concept and the first products have been recently authorized by the competent authorities. Superiority was given as the mini-tablets ease the swallowing procedure compared to conventional tablets, enable various modified drug release opportunities including taste-masking by film-coating technology and provide excellent drug stability compared to liquid oral dosage forms. Due to these product attributes they are particularly beneficial to children and their caregivers. Furthermore, there is potential for precise individual drug dosing by counting adequate amounts of the multiple drug carriers. Most recently, two novel products with different concepts were authorized by the EMA and entered the market which are highlighted in this review: the first orodispersible mini-tablet with enalapril maleate for congenital heart failure (Aqumeldi® from Proveca Pharma) and the first single unit mini-tablet with matrix-type controlled melatonin release for insomnia (Slenyto® from Neurim Pharmaceuticals). Our review reveals, that the majority of the published scientific papers use co-processed, ready-to-use excipients for the orodispersible mini-tablet formulations. However, traditional fillers such as microcrystalline cellulose or lactose have also been used for immediate release mini-tablets after adding a (super)disintegrant and a lubricant. The manufacturing of mini-tablets is conducted on conventional rotary tablet presses, predominantly equipped with multi-tip toolings to improve the yield or production speed. Scaling-up has been successfully realized from compaction simulators to pilot and production scale. Film-coatings enabling gastric resistance, taste masking or sustained-release properties have been realized in both fluid-bed and drum coaters using the same polymers as for conventional tablets. There is still a significant lack in regulatory guidance despite the recent success of the mini-tablet concept, starting from suitable characterization methods in the pharmacopoeias up to the design and conduct of clinical studies on mini-tablets.
Collapse
Affiliation(s)
- Valentinë Lura
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 140225 Düsseldorf, Germany
| | - Ard Lura
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 140225 Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 140225 Düsseldorf, Germany
| | - Viviane Klingmann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstrasse 540225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Setia A, Challa RR, Vallamkonda B, Vaishali, Viswanadh MK, Muthu MS. Clinical Implications of Proton Pump Inhibitors and Vonoprazan Micro/Nano Drug Delivery Systems for Gastric Acid-Related Disorders and Imaging. Nanotheranostics 2024; 8:535-560. [PMID: 39507107 PMCID: PMC11539181 DOI: 10.7150/ntno.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
Excessive stomach acid or bacterial infection are the root causes of gastric acid-related disorders, such as peptic ulcer disease and gastroesophageal reflux disease. Proton pump inhibitors including lansoprazole, omeprazole, esomeprazole, rabeprazole, etc. are medications used to treat gastric acid-related diseases. One of the most effective drugs for treating gastroesophageal reflux disease is vonoprazan, owing to its ability to strongly inhibit gastric acid. Proton pump inhibitors and vonoprazan work in distinct ways to prevent the production of stomach acid. Vonoprazan inhibits acid secretion by blocking the potassium-competitive acid blocker receptor, whereas proton pump inhibitors function by irreversibly blocking the proton pump in the parietal cells of the stomach. Delayed release tablets, delayed release capsules, minitablets, pellets, bilayer, floating, mucoadhesive tablets and nanoparticles, are some of the methods used in the development of micro/nano formulations with proton pump inhibitors and vonoprazan. Diagnosis and therapy of gastric acid-related illnesses, particularly those treated with drugs such as vonoprazan and proton pump inhibitors, rely heavily on imaging modalities such as CT scans, X-rays, endoscopy, fluorescence and HRM imaging. This review provides a comprehensive update on various micro/nanoformulations of proton pump inhibitors and vonoprazan. Moreover, we provide an outlook on clinical imaging of proton pump inhibitors and vonoprazan formulation for gastric acid related diseases. We have limited our discussion to case studies and clinical trials on proton pump inhibitors and vonoprazan for gastric acid related disease.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Ranadheer Reddy Challa
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi-522213, Andhra Pradesh, India
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi-522213, Andhra Pradesh, India
| | - Vaishali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutics, KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram 522302, AP, India
| | - Madaswamy S. Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
3
|
Yan K, Dai X, Li Z, Rong W, Chen L, Diao X. Clinical Study on the Eradication of Helicobacter pylori by Vonoprazan Combined with Amoxicillin for 10-Day Dual Therapy. Clin Pharmacol Drug Dev 2024; 13:240-247. [PMID: 38197874 DOI: 10.1002/cpdd.1357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Vonoprazan holds significant research promise for Helicobacter pylori eradication, with the goal of determining the most effective drug regimen. In this study, H. pylori patients (426) were enrolled and randomized into 3 groups: an EA14 group (20 mg of esomeprazole qid and 1000 mg of amoxicillin tid for 14 days), a VA14 group (20 mg of vonoprazan bid and 750 mg of amoxicillin qid for 14 days), and a VA10 group (20 mg of vonoprazan bid and 1000 mg of amoxicillin tid for 10 days). Key outcomes encompassed the H. pylori eradication rate, patient adverse effects, and compliance. In the EA14, VA14, and VA10 groups, H. pylori eradication rates were 89.4%, 90.1%, and 88.7% in intention-to-treat analysis, and 94.2%, 94.4%, and 94.6% in per-protocol analysis, respectively. Adverse events incidences were 14.8%, 12.7%, and 5.6%, while compliance rates were 88.7%, 90.9%, and 95.8%, respectively. Notably, the VA10 regimen demonstrated comparable H. pylori eradication rates, adverse effect incidences, and compliance levels to the EA14 and VA14 regimens.
Collapse
Affiliation(s)
- Kunfeng Yan
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| | - Xiaorong Dai
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| | - Zhenxing Li
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| | - Weiwei Rong
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| | - Lei Chen
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| | - Xinxin Diao
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| |
Collapse
|
4
|
Patel K, Patel J, Shah S. Development of Delayed Release Oral Formulation Comprising Esomeprazole Spray Dried Dispersion Utilizing Design of Experiment As An Optimization Strategy. AAPS PharmSciTech 2023; 24:186. [PMID: 37700215 DOI: 10.1208/s12249-023-02642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Solid dispersion (SD) technology is one of the most widely preferred solubility enhancement methods, especially for Biopharmaceutics classification system class II and IV drugs. Since the last decade, its application for the dual purpose of solubility hike and modified release using novel carriers has been in demand for its added advantages. Spray drying is a commercially accepted technique with high aspects of scalability and product characteristics. The current study used spray-dried dispersion to design delayed release capsule for the proton pump inhibitor esomeprazole. The SD carrier hydroxypropyl methylcellulose acetate succinate-medium grade (HPMCAS-MF) enhanced solubility, inhibited precipitation of saturated drug solutions, and allowed enteric release owing to its solubility above pH 6. The proposed approach avoided compression, coating with enteric polymers, and the development of multi-particulate pellet-based formulations, improving manufacturing feasibility. The formulation was optimized using Box-Behnken design, considering significant formulation variables like HPMCAS-MF proportion and critical process parameters like feed flow rate and inlet temperature. The optimized spray-dried dispersion were characterized based on Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM) and also evaluated for solubility, in vitro drug release, residual solvent content, and stability testing. Response surface methodology optimization anticipated that formulation variables affected solubility and release profile, whereas CPPs affected yield. The design space was developed via overlay plot based on constraints specified to attain the desired response and validated using three checkpoint batches with desirability 1. FTIR showed active pharmaceutical ingredient-polymer compatibility. Particle size and SEM studies showed spherical particles with an average Z-value of 1.8 µ. DSC and PXRD confirmed SD's amorphous nature. The drug release investigation and release kinetics prediction utilizing DD-solver software showed a 2-h lag time with > 90% cumulative drug release up to 4 h for the DR formulation. ESM SDD were prepared by spray drying technique using the novel solid dispersion carrier HPMCAS-MF to serve the dual purpose of solubility enhancement and delayed release. The ratio of API:carrier and process variables like feed flow rate and inlet temperature were varied using the Box-Behnken Design to determine the design space of optimized product to procure the desired characteristics of solubility improvement compared to crystalline API and delayed release of PPI to avoid the degradation in the gastric environment. The developed formulation represents several benefits over the already existing marketed products.
Collapse
Affiliation(s)
- Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
- Gujarat Technological University, Ahmedabad, India
| | - Jaymin Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India.
| |
Collapse
|
5
|
Kim HC, Yang E, Ban MS, Kim YK, Hong SH, Jung J, Jang IJ, Lee S. Pharmacokinetics and Pharmacodynamics of Esomezol DR, a New Dual Delayed-Release Formulation of Esomeprazole 20 Mg or 40 Mg, in Healthy Subjects. Drug Des Devel Ther 2023; 17:1115-1124. [PMID: 37077412 PMCID: PMC10106809 DOI: 10.2147/dddt.s392533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023] Open
Abstract
Background Esomeprazole, a proton pump inhibitor (PPI), is widely used to treat acid-related disorders, but it has short plasma half-life which can cause insufficient gastric acid suppression, such as nocturnal acid breakthrough. A new dual delayed-release (DR) formulation of esomeprazole (Esomezol DR), was developed to extend the duration of gastric acid suppression. Purpose This study aimed to evaluate the pharmacokinetics (PKs) and pharmacodynamics (PDs) of esomeprazole for the DR formulation compared to a conventional enteric-coated (EC) formulation (Nexium) in healthy male subjects. Methods Two randomized, open-label, multiple-dose, two-way crossover studies with esomeprazole 20 mg and 40 mg were conducted. Subjects received the DR formulation or the EC formulation once daily for 7 days in each period with a 7-day washout. Serial blood samples were collected up to 24 hours after the 1st dose, and 24-hour intragastric pH was continuously monitored before the 1st dose as baseline and after the 1st and the 7th dose. Results In 20 mg and 40 mg dose groups, 38 and 44 subjects completed the study, respectively. The DR formulation exhibited the dual-release pattern of esomeprazole, resulting in more sustained plasma concentration-time profiles compared to the EC formulation. The systemic exposure of esomeprazole for the DR formulation was comparable to that for the EC formulation, showing the similar area under the plasma concentration-time curve. The 24-hour gastric acid suppression was also similar between the two formulations, while the inhibition during night-time (22:00-06:00) showed a better tendency in the DR formulation. Conclusion The sustained exposure of esomeprazole in the DR formulation led to well-maintained and higher acid inhibition compared to the EC formulation, especially during the night-time. These results suggest that the DR formulation can be an alternative formulation to the conventional EC formulation, expecting the potential of relieving nocturnal acid-related symptoms.
Collapse
Affiliation(s)
- Hyun Chul Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Eunsol Yang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Mu Seong Ban
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Yu Kyong Kim
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University College of Medicine and Hospital, Cheongju, Republic of Korea
| | - Sung Hee Hong
- Hanmi Pharmaceutical Co., Ltd., Seoul, Republic of Korea
| | - Jina Jung
- Hanmi Pharmaceutical Co., Ltd., Seoul, Republic of Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Correspondence: SeungHwan Lee, Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea, Tel +82-2-2072-2343, Fax +82-2-742-9252, Email
| |
Collapse
|