1
|
Khodadadian R, Balali- Dehkordi S. A comprehensive review of the neurological effects of anethole. IBRO Neurosci Rep 2025; 18:50-56. [PMID: 39844944 PMCID: PMC11750503 DOI: 10.1016/j.ibneur.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Since ancient times many countries have employed medicinal plants as part of traditional medicine. Anethole is a substance found in various plants and has two isomers, cis-anethole (CA) and trans-anethole (TA). Currently, the food industry extensively use anethole as an aromatic and flavoring component. Extensive scientific research are warranted to provide scientific proof for the usage of anethole, given its widespread use and affordable price. Preclinical studies have suggested several pharmacological effects for anethole including neuroprotective properties. It has been determined that anethole through modulation of monoamines, gamma-aminobutyric acid (GABA)ergic and glutamatergic neurotransmissions as well as its possible anti-inflammatory and antioxidative stress properties affected central nervous system (CNS). In this concept previous studies have demonstrated anxiolytic, antidepressant, antinociceptive, anticonvulsant, and memory improvement effects for anethole. To fully understand its therapeutic potentials, more research are required to elucidate the precise mechanisms by which TA and CA affected CNS. This review summarizes the current knowledge on pharmacological activities of the anethole concentrating its neurological properties, and the possible mechanisms underlying these effects. Various pharmacological effects which have been reported suggesting that anethole could be considered as a potential agent for management of neurological disorders.
Collapse
Affiliation(s)
- Ramina Khodadadian
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Shima Balali- Dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
2
|
Salari A, Roghani M, Khalili M. HMG-CoA reductase inhibitor simvastatin ameliorates trimethyltin neurotoxicity and cognitive impairment through reversal of Alzheimer's-associated markers. Metab Brain Dis 2024; 40:74. [PMID: 39704877 DOI: 10.1007/s11011-024-01515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder in elderly. The neurotoxicant trimethyltin (TMT) induces neurodegenerative changes, as observed in AD. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor simvastatin (SV) has shown protective and promising therapeutic effects in neurological disorders such as AD and Parkinson's disease. The present study aimed to assess neuroprotective effect of simvastatin (SV) against trimethyltin (TMT) memory decline and hippocampal neurodegeneration. For inducing AD-like phenotype, rats were i.p. injected with TMT at 8 mg/kg and were treated with simvastatin daily for 3 weeks at 10 or 30 mg/kg. Our analysis of data indicated that simvastatin-treated TMT group has lower learning and memory deficits in behavioral tasks comprising Barnes maze, Y maze, and novel object discrimination (NOD). In addition, hippocampal inflammatory, oxidative, and apoptotic factors were attenuated besides reduction of acetylcholinesterase (AChE) activity and Alzheimer's pathology factors including presenilin-1 and hyperphorphorylated Tau (p-Tau) upon simvastatin. Moreover, simvastatin treatment of TMT group inverted hippocampal changes of Wnt, β-catenin, ERK, and Akt, ameliorated astrocytic and microglial reactivity, and also prevented injury of CA1 neurons. This study unraveled that simvastatin is capable to prevent TMT-induced Alzheimer's-like phenotype in association with Wnt/β-catenin/ERK/Akt as well as restraining hippocampal neurodegeneration.
Collapse
Affiliation(s)
- Adel Salari
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Mohsen Khalili
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
3
|
Yadollahi-Farsani Y, Vanani VR, Lorigooini Z, Farahzad A, Amini-Khoei H. Anethole via increase in the gene expression of PI3K/AKT/mTOR mitigates the autistic-like behaviors induced by maternal separation stress in mice. IBRO Neurosci Rep 2024; 16:1-7. [PMID: 38145174 PMCID: PMC10733685 DOI: 10.1016/j.ibneur.2023.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodegenerative disease with increasing incidence in the world. The maternal separation (MS) stress at early life with its own neuroendocrine and neurostructural changes can provide the basis for development of ASD. Previously it has been reported neuroprotective characteristics for anethole. The PI3K/AKT/mTOR signaling pathway has pivotal role in the function of central nervous system (CNS). This study aimed to evaluate the possible effects of anethole on the autistic-like behaviors in the maternally separated (MS) mice focusing on the potential role of the PI3K/AKT/mTOR pathway. Forty male Naval Medical Research Institute (NMRI) mice were assigned to five groups (n = 8) comprising a control group (treated with normal saline) and four groups subjected to MS and treated with normal saline and or anethole at doses of 31.25, 62.5 and 125 mg/kg, respectively. All gents were administrated via intraperitoneal (i.p.) route for 14 constant days. Behavioral tests were conducted, including the three-chamber test, shuttle box and resident-intruder test. The gene expression of the PI3K, AKT and mTOR assessed in the hippocampus by qRT-PCR. Findings indicated that MS is associated with autistic-like behaviors. Anethole increased the sociability and social preference indexes in the three-chamber test, increased duration of secondary latency in the shuttle box test and decreased aggressive behaviors in the resident-intruder test. Also, anethole increased the gene expression of PI3K, AKT and mTOR in the hippocampus of MS mice. We concluded that anethole through increase in the gene expression of PI3K/ AKT/mTOR mitigated autistic-like behaviors induced by MS in mice.
Collapse
Affiliation(s)
- Yasaman Yadollahi-Farsani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahid Reisi Vanani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Anahita Farahzad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Gao Y, Liao W, Zhang R, Lei Y, Chen T, Wu L, Li M, Liu X, Cai F. PK2/PKRs pathway is involved in the protective effect of artemisinin against trimethyltin chloride-induced hippocampal injury. Toxicology 2023; 486:153432. [PMID: 36696940 DOI: 10.1016/j.tox.2023.153432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/23/2023]
Abstract
Neuroinflammation is one of the important mechanisms of trimethyltin chloride (TMT) central neurotoxicity. Artemisinin (ARS) is a well-known antimalarial drug that also has significant anti-inflammatory effects. Prokineticin 2 (PK2) is a small molecule secreted protein that is widely expressed in the nervous system and plays a key role in the development of neuroinflammation. However, it remains unclear whether ARS can ameliorate neuroinflammation caused by TMT and whether PK2/PKRs signaling pathway plays a part in it. In this research, male Balb/c mice were administered TMT (2.8 mg/kg, i.p.) followed by immunohistochemistry to assess the expression of PK2, PKR1, and PKR2 proteins in the hippocampus. Network pharmacology was used to predict the intersection targets of ARS, central nervous system(CNS) injury and TMT. The neurobehavior of mice was evaluated by behavioral scores. Histopathological damage of the hippocampus was evaluated by HE, Nissl and Electron microscopy. Western blotting was used to identify the expression of synapse-related proteins (PSD95, SYN1, Synaptophysin), PK system-related proteins (PK2, PKR1, PKR2), and inflammation-related proteins (TNF-α, NF-κB p65). Immunohistochemistry showed that TMT resulted in elevated PK2 and PKR2 protein expression in the CA2 and CA3 regions of the hippocampus in mice, while PKR1 protein was not significantly altered. Network pharmacology showed that PK2 could interact with the intersectional targets of ARS, CNS injury, and TMT. ARS remarkably attenuated TMT-induced seizures and hippocampal histological damage. Further studies demonstrated that ARS treatment attenuated TMT-induced hippocampal ultrastructural damage, possibly by increasing the number of rough endoplasmic reticulum and mitochondria as well as upregulating the levels of synapse-associated proteins (PSD95, SYN1, Synaptophysin). Western blotting results revealed that ARS downregulated TMT-induced TNF-α and NF-κB p65 protein levels. In addition, ARS also decreased TMT-induced protein expression of PK2 and PKR2 in the mouse hippocampus, but had no significant effect on PKR1 protein expression. Our results suggested that ARS ameliorated TMT-induced abnormal neural behavior and hippocampal injury, which may be achieved by regulating PK2/PKRs inflammatory pathway and ameliorating synaptic injury. Therefore, we suggest that PK2/PKRs pathway may be involved in TMT neurotoxicity and ARS may be a promising drug that can relieve TMT neurotoxicity.
Collapse
Affiliation(s)
- Yuting Gao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China; School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, 437100, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Wenli Liao
- Basic Medical School, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Yining Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Tao Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Lingling Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Manqin Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Xinran Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Fei Cai
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, 437100, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
5
|
Nephroprotective Effect of Fennel ( Foeniculum vulgare) Seeds and Their Sprouts on CCl 4-Induced Nephrotoxicity and Oxidative Stress in Rats. Antioxidants (Basel) 2023; 12:antiox12020325. [PMID: 36829884 PMCID: PMC9952328 DOI: 10.3390/antiox12020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Functional and nutritional characteristics of seed sprouts and their association with oxidative stress-related disorders have recently become a focus of scientific investigations. The biological activities of fennel seeds (FS) and fennel seed sprouts (FSS) were investigated in vitro and in vivo. The total phenolic content (TPC), total flavonoids (TF), total flavonols (TFF), and antioxidant activity (AOA) of FS and FSS were examined. HPLC and GC-MS analyses for FS and FSS were carried out. Consequently, the nephroprotective and antioxidative stress potential of FS and FSS extracts at 300 and 600 mg kg-1 on CCl4-induced nephrotoxicity and oxidative stress in rats was investigated. In this context, kidney relative weight, blood glucose level (BGL), lipid profile, kidney function (T. protein, albumin, globulin, creatinine, urea, and blood urea nitrogen (BUN)), and oxidative stress biomarkers (GSH, CAT, MDA, and SOD) in the rat's blood as well as the histopathological alteration in kidney tissues were examined. Results indicated that the sprouting process of FS significantly improved TPC, TF, TFL, and AOA in vitro. HPLC identified nineteen compounds of phenolic acids and their derivatives in FS. Thirteen phenolic compounds in FS and FSS were identified, the highest of which was vanillic acid. Six flavonoids were also identified with a predominance of kaempferol. GC-MS indicated that the trans-anethole (1-methoxy-4-[(E)-prop-1-enyl]benzene) component was predominant in FS and FSS, significantly increasing after sprouting. In in vivo examination, administering FS and FSS extracts ameliorated the BGL, triglycerides (TG), total cholesterol (CHO), and their derivative levels compared to CCl4-intoxicated rats. A notable improvement in FS and FSS with 600 mg kg-1 compared to 300 mg kg-1 was observed. A dose of 600 mg FSS kg-1 reduced the TG, CHO, and LDL-C and increased HDL-C levels by 32.04, 24.62, 63.00, and 67.17% compared to G2, respectively. The atherogenic index (AI) was significantly improved with 600 mg kg-1 of FSS extracts. FS and FSS improved kidney function, reduced malondialdehyde (MDA), and restored the activity of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Both FS and FSS extracts attenuated the histopathological alteration in CCl4-treated rats. Interestingly, FSS extract presented better efficiency as a nephroprotection agent than FS extract. In conclusion, FSS can potentially restore oxidative stability and improve kidney function after acute CCl4 kidney injury better than FS. Therefore, FS and FSS extracts might be used for their promising nephroprotective potential and to help prevent diseases related to oxidative stress. Further research on their application in humans is highly recommended.
Collapse
|
6
|
Momeni BZ, Hosseini SF, Janczak J. New supramolecular architectures of 4′-(4-quinolinyl)-2,2′:6′,2′'-terpyridine based tin complexes: Design, structural variations and thermal properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Barakat H, Alkabeer IA, Aljutaily T, Almujaydil MS, Algheshairy RM, Alhomaid RM, Almutairi AS, Mohamed A. Phenolics and Volatile Compounds of Fennel ( Foeniculum vulgare) Seeds and Their Sprouts Prevent Oxidative DNA Damage and Ameliorates CCl 4-Induced Hepatotoxicity and Oxidative Stress in Rats. Antioxidants (Basel) 2022; 11:antiox11122318. [PMID: 36552526 PMCID: PMC9774655 DOI: 10.3390/antiox11122318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Researchers recently focused on studying the nutritional and functional qualities of sprouts generated from seeds. The current study investigated the total phenolic content (TPC), total flavonoids (TF), total flavonols (TFL), antioxidant activity (AOA), specific phenolic acids, and volatile chemicals in fennel seeds (FS) and fennel seed sprouts (FSS). The oxidative DNA damage prevention activity of selected FS and FSS extracts against DNA was examined. Consequently, the antioxidative stress potential of FS and FSS extracts at 300 and 600 mg kg-1 on CCl4-induced hepatotoxicity and oxidative stress in rats weas investigated. The liver's functions and oxidative stress biomarkers in rat blood were examined. FSS exhibited rich phytochemical content such as TPC, TF, TFL, and AOA with altered phenolics and volatiles. HPLC identified nineteen compounds of phenolic acids and their derivatives in FS. Thirteen phenolics and six flavonoids were predominantly identified as Vanillic acid and Kaempferol, respectively. GC-MS analysis identified fifty and fifty-one components in FS and FSS, respectively. The predominant component was Benzene, [1-(2-propenyloxy)-3-butenyl] (trans-Anethole) (38.41%), followed by trans-Anethole (Benzene, 1-methoxy-4-(2-propenyl)) (23.65%), Fenchone (11.18%), and 1,7-Octadiene, 2-methyl-6-methylene- Cyclohexene (7.17%). Interestingly, α-Pinene, Fenchone, trans-Anethole (Benzene, 1-methoxy-4-(2-propenyl)), 4-Methoxybenzaldehyde (4-Anisaldehyde), Benzeneacetic acid, α-hydroxy-4-methoxy, and Nonacosane contents were increased. While Dillapiole, 7-Octadecenoic acid, and methyl ester were newly identified and quantified in FSS. The oxidative DNA damage prevention capability of FSS and FS extracts indicated remarkable DNA protection. Administrating FS and FSS extracts at 300 and 600 mg kg-1 ameliorated AST, ALT, and ALP, as well as GSH, CAT, MDA, and SOD, in a dose-dependent manner. The most efficient treatment of FS or FSS was using a dose of 600 mg Kg-1, which recorded an improvement rate of 20.77 and 24.17, 20.36 and 24.92, and 37.49 and 37.90% for ALT, AST, and ALP, respectively. While an improvement rate of 40.08 and 37.87%, 37.17 and 46.52%, 114.56 and 154.13%, and 66.05 and 69.69% for GSH, DMA, CAT, and SOD compared to the CCl4-group, respectively. The observed protection is associated with increased phenolics and volatiles in F. vulgare. Therefore, FS and FSS are recommended as functional foods with bioactive functionality, health-promoting properties, and desired prevention capabilities that may help prevent oxidative stress-related diseases.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
- Correspondence: or ; Tel.: +966-547141277
| | - Ibrahim Ali Alkabeer
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mona S. Almujaydil
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Reham M. Algheshairy
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Raghad M. Alhomaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdulkarim S. Almutairi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmed Mohamed
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|