1
|
Thakur A, Wadhwa A, Lokras A, Müllertz OAO, Christensen D, Franzyk H, Foged C. Method of manufacturing CAF®09 liposomes affects immune responses induced by adjuvanted subunit proteins. Eur J Pharm Biopharm 2023; 189:84-97. [PMID: 37059402 DOI: 10.1016/j.ejpb.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
The ability to induce antigen-specific CD4+ and CD8+T-cell responses is one of the fundamental requirements when developing new efficacious vaccines against challenging infectious diseases and cancer. However, no adjuvants are currently approved for human subunit vaccines that induce T-cell immunity. Here, we incorporated a Toll-like receptor 4 agonist, i.e., the ionizable lipidoid L5N12, in the liposomal cationic adjuvant formulation 09 (CAF®09), and found that modified CAF®09 liposomes possess preserved adjuvant function as compared to unmodified CAF®09. CAF®09 consists of the cationic lipid dimethyldioctadecylammonium (DDA), monomycoloyl glycerol analogue 1 (MMG-1), and polyinosinic:polycytidylic acid [poly(I:C)]. By using the microfluidic mixing technology for liposome preparation, we gradually replaced DDA with L5N12, while keeping the molar ratios of MMG-1 and poly(I:C) constant. We found that this type of modification resulted in colloidally stable liposomes, which were significantly smaller and displayed reduced surface charge as compared to unmodified CAF®09, prepared by using the conventional thin film method. We showed that incorporation of L5N12 decreases the membrane rigidity of CAF®09 liposomes. Furthermore, vaccination with antigen adjuvanted with L5N12-modified CAF®09 or antigen adjuvanted with unmodified CAF®09, respectively, induced comparable antigen-specific serum antibody titers. We found that antigen adjuvanted with L5N12-modified CAF®09 induced antigen-specific effector and memory CD4+ and CD8+T-cell responses in the spleen comparable to those induced when unmodified CAF®09 was used as adjuvant. However, incorporating L5N12 did not have a synergistic immunopotentiating effect on the antibody and T-cell responses induced by CAF®09. Moreover, vaccination with antigen adjuvanted with unmodified CAF®09, which was manufactured by using microfluidic mixing, induced significantly lower antigen-specific CD4+ and CD8+T-cell responses than vaccination with antigen adjuvanted with unmodified CAF®09, which was prepared by using the thin film method. These results show that the method of manufacturing affects CAF®09 liposome adjuvanted antigen-specific immune responses, which should be taken into consideration when evaluating immunogenicity of subunit protein vaccines.
Collapse
Affiliation(s)
- Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Abishek Wadhwa
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Abhijeet Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Olivia Amanda Oest Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
2
|
Prompetchara E, Ketloy C, Alameh MG, Tharakhet K, Kaewpang P, Yostrerat N, Pitakpolrat P, Buranapraditkun S, Manopwisedjaroen S, Thitithanyanont A, Jongkaewwattana A, Hunsawong T, Im-Erbsin R, Reed M, Wijagkanalan W, Patarakul K, Techawiwattanaboon T, Palaga T, Lam K, Heyes J, Weissman D, Ruxrungtham K. Immunogenicity and protective efficacy of SARS-CoV-2 mRNA vaccine encoding secreted non-stabilized spike in female mice. Nat Commun 2023; 14:2309. [PMID: 37085495 PMCID: PMC10120480 DOI: 10.1038/s41467-023-37795-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Establishment of an mRNA vaccine platform in low- and middle-income countries (LMICs) is important to enhance vaccine accessibility and ensure future pandemic preparedness. Here, we describe the preclinical studies of "ChulaCov19", a SARS-CoV-2 mRNA encoding prefusion-unstabilized ectodomain spike protein encapsulated in lipid nanoparticles (LNP). In female BALB/c mice, ChulaCov19 at 0.2, 1, 10, and 30 μg elicits robust neutralizing antibody (NAb) and T cell responses in a dose-dependent relationship. The geometric mean titers (GMTs) of NAb against wild-type (WT, Wuhan-Hu1) virus are 1,280, 11,762, 54,047, and 62,084, respectively. Higher doses induce better cross-NAb against Delta (B.1.617.2) and Omicron (BA.1 and BA.4/5) variants. This elicited immunogenicity is significantly higher than those induced by homologous CoronaVac or AZD1222 vaccination. In a heterologous prime-boost study, ChulaCov19 booster dose generates a 7-fold increase of NAb against Wuhan-Hu1 WT virus and also significantly increases NAb response against Omicron (BA.1 and BA.4/5) when compared to homologous CoronaVac or AZD1222 vaccination. Challenge studies show that ChulaCov19 protects human-ACE-2-expressing female mice from COVID-19 symptoms, prevents viremia and significantly reduces tissue viral load. Moreover, anamnestic NAb response is undetectable in challenge animals. ChulaCov19 is therefore a promising mRNA vaccine candidate either as a primary or boost vaccination and has entered clinical development.
Collapse
Affiliation(s)
- Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kittipan Tharakhet
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Papatsara Kaewpang
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nongnaphat Yostrerat
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patrawadee Pitakpolrat
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supranee Buranapraditkun
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Taweewan Hunsawong
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, USAMD-AFRIMS, Bangkok, 10400, Thailand
| | - Matthew Reed
- Department of Veterinary Medicine, USAMD-AFRIMS, Bangkok, 10400, Thailand
| | | | - Kanitha Patarakul
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerasit Techawiwattanaboon
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kieu Lam
- Genevant Sciences Corporation, Vancouver, BC, V5T 4T5, Canada
| | - James Heyes
- Genevant Sciences Corporation, Vancouver, BC, V5T 4T5, Canada
| | - Drew Weissman
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Medicine, and School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|