1
|
Hong N, Vargo SM, Hatanaka G, Gong Z, Stanis N, Zhou J, Belloir T, Wang RK, Bair W, Chamanzar M, Yazdan-Shahmorad A. Multimodal optical imaging and modulation through Smart Dura in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640384. [PMID: 40093178 PMCID: PMC11908230 DOI: 10.1101/2025.02.27.640384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A multimodal neural interface integrating electrical and optical functionalities is a promising tool for recording and manipulating neuronal activity, providing multiscale information with enhanced spatiotemporal resolution. However, most technologies for multimodal implementation are limited in their applications to small animal models and lack the ability to translate to larger brains, such as non-human primates (NHPs). Recently, we have developed a large-scale neural interface for NHPs, Smart Dura, which enables electrophysiological recordings and high optical accessibility. In this paper, we demonstrate the multimodal applications of Smart Dura in NHPs by combining with multiphoton imaging, optical coherence tomography angiography (OCTA), and intrinsic signal optical imaging (ISOI), as well as optical manipulations such as photothrombotic lesioning and optogenetics. Through the transparent Smart Dura, we could obtain fluorescence images down to 200 μm and 550 μm depth using two-photon and three-photon microscopy, respectively. Integrated with simultaneous electrophysiology using the Smart Dura, we could also assess vascular and neural dynamics with OCTA and ISOI, induce ischemic stroke, and apply optogenetic neuromodulation over a wide coverage area of 20 mm diameter. This multimodal interface enables comprehensive investigations of brain dynamics in NHPs, advancing translational neurotechnology for human applications.
Collapse
Affiliation(s)
- Nari Hong
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Sergio Montalvo Vargo
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Gaku Hatanaka
- Washington National Primate Research Center, Seattle, WA, 98195, USA
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoyu Gong
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Noah Stanis
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Jasmine Zhou
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Tiphaine Belloir
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Wyeth Bair
- Washington National Primate Research Center, Seattle, WA, 98195, USA
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, 15213, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
- Weill Neurohub
| |
Collapse
|
2
|
Kakinen A, Jiang Y, Davis TP, Teesalu T, Saarma M. Brain Targeting Nanomedicines: Pitfalls and Promise. Int J Nanomedicine 2024; 19:4857-4875. [PMID: 38828195 PMCID: PMC11143448 DOI: 10.2147/ijn.s454553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Brain diseases are the most devastating problem among the world's increasingly aging population, and the number of patients with neurological diseases is expected to increase in the future. Although methods for delivering drugs to the brain have advanced significantly, none of these approaches provide satisfactory results for the treatment of brain diseases. This remains a challenge due to the unique anatomy and physiology of the brain, including tight regulation and limited access of substances across the blood-brain barrier. Nanoparticles are considered an ideal drug delivery system to hard-to-reach organs such as the brain. The development of new drugs and new nanomaterial-based brain treatments has opened various opportunities for scientists to develop brain-specific delivery systems that could improve treatment outcomes for patients with brain disorders such as Alzheimer's disease, Parkinson's disease, stroke and brain tumors. In this review, we discuss noteworthy literature that examines recent developments in brain-targeted nanomedicines used in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Yuhao Jiang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Tambet Teesalu
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Iritani R, Belloir T, Griggs DJ, Ip Z, Anderson Z, Yazdan-Shahmorad A. A Neural Implant Design Toolbox for Nonhuman Primates. J Vis Exp 2024:10.3791/66167. [PMID: 38407257 PMCID: PMC11861238 DOI: 10.3791/66167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
This paper describes an in-house method of 3D brain and skull modeling from magnetic resonance imaging (MRI) tailored for nonhuman primate (NHP) neurosurgical planning. This automated, computational software-based technique provides an efficient way of extracting brain and skull features from MRI files as opposed to traditional manual extraction techniques using imaging software. Furthermore, the procedure provides a method for visualizing the brain and craniotomized skull together for intuitive, virtual surgical planning. This generates a drastic reduction in time and resources from those required by past work, which relied on iterative 3D printing. The skull modeling process creates a footprint that is exported into modeling software to design custom-fit cranial chambers and headposts for surgical implantation. Custom-fit surgical implants minimize gaps between the implant and the skull that could introduce complications, including infection or decreased stability. By implementing these pre-surgical steps, surgical and experimental complications are reduced. These techniques can be adapted for other surgical processes, facilitating more efficient and effective experimental planning for researchers and, potentially, neurosurgeons.
Collapse
Affiliation(s)
- Rachel Iritani
- Department of Bioengineering, Washington National Primate Research Center, University of Washington
| | - Tiphaine Belloir
- Department of Bioengineering, Washington National Primate Research Center, University of Washington
| | - Devon J Griggs
- Department of Electrical and Computer Engineering, Washington National Primate Research Center, University of Washington
| | - Zachary Ip
- Department of Bioengineering, Washington National Primate Research Center, University of Washington
| | - Zada Anderson
- Department of Biomedical Engineering, Purdue University
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, Washington National Primate Research Center, University of Washington; Department of Electrical and Computer Engineering, Washington National Primate Research Center, University of Washington;
| |
Collapse
|
4
|
Zimphango C, Mada MO, Sawiak SJ, Giorgi-Coll S, Carpenter TA, Hutchinson PJ, Carpenter KLH, Stovell MG. In-vitro gadolinium retro-microdialysis in agarose gel-a human brain phantom study. FRONTIERS IN RADIOLOGY 2024; 4:1085834. [PMID: 38356693 PMCID: PMC10864450 DOI: 10.3389/fradi.2024.1085834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Rationale and objectives Cerebral microdialysis is a technique that enables monitoring of the neurochemistry of patients with significant acquired brain injury, such as traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH). Cerebral microdialysis can also be used to characterise the neuro-pharmacokinetics of small-molecule study substrates using retrodialysis/retromicrodialysis. However, challenges remain: (i) lack of a simple, stable, and inexpensive brain tissue model for the study of drug neuropharmacology; and (ii) it is unclear how far small study-molecules administered via retrodialysis diffuse within the human brain. Materials and methods Here, we studied the radial diffusion distance of small-molecule gadolinium-DTPA from microdialysis catheters in a newly developed, simple, stable, inexpensive brain tissue model as a precursor for in-vivo studies. Brain tissue models consisting of 0.65% weight/volume agarose gel in two kinds of buffers were created. The distribution of a paramagnetic contrast agent gadolinium-DTPA (Gd-DTPA) perfusion from microdialysis catheters using magnetic resonance imaging (MRI) was characterized as a surrogate for other small-molecule study substrates. Results We found the mean radial diffusion distance of Gd-DTPA to be 18.5 mm after 24 h (p < 0.0001). Conclusion Our brain tissue model provides avenues for further tests and research into infusion studies using cerebral microdialysis, and consequently effective focal drug delivery for patients with TBI and other brain disorders.
Collapse
Affiliation(s)
- Chisomo Zimphango
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Marius O. Mada
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Sawiak
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - T. Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Matthew G. Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Neurosurgery, The Walton Centre, Liverpool, United Kingdom
| |
Collapse
|
5
|
Ledri M, Andersson M, Wickham J, Kokaia M. Optogenetics for controlling seizure circuits for translational approaches. Neurobiol Dis 2023:106234. [PMID: 37479090 DOI: 10.1016/j.nbd.2023.106234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
The advent of optogenetic tools has had a profound impact on modern neuroscience research, revolutionizing our understanding of the brain. These tools offer a remarkable ability to precisely manipulate specific groups of neurons with an unprecedented level of temporal precision, on the order of milliseconds. This breakthrough has significantly advanced our knowledge of various physiological and pathophysiological processes in the brain. Within the realm of epilepsy research, optogenetic tools have played a crucial role in investigating the contributions of different neuronal populations to the generation of seizures and hyperexcitability. By selectively activating or inhibiting specific neurons using optogenetics, researchers have been able to elucidate the underlying mechanisms and identify key players involved in epileptic activity. Moreover, optogenetic techniques have also been explored as innovative therapeutic strategies for treating epilepsy. These strategies aim to halt seizure progression and alleviate symptoms by utilizing the precise control offered by optogenetics. The application of optogenetic tools has provided valuable insights into the intricate workings of the brain during epileptic episodes. For instance, researchers have discovered how distinct interneuron populations contribute to the initiation of seizures (ictogenesis). They have also revealed how remote circuits in regions such as the cerebellum, septum, or raphe nuclei can interact with hyperexcitable networks in the hippocampus. Additionally, studies have demonstrated the potential of closed-loop systems, where optogenetics is combined with real-time monitoring, to enable precise, on-demand control of seizure activity. Despite the immense promise demonstrated by optogenetic approaches, it is important to acknowledge that many of these techniques are still in the early stages of development and have yet to reach potential clinical applications. The transition from experimental research to practical clinical use poses numerous challenges. In this review, we aim to introduce optogenetic tools, provide a comprehensive survey of their application in epilepsy research, and critically discuss their current potential and limitations in achieving successful clinical implementation for the treatment of human epilepsy. By addressing these crucial aspects, we hope to foster a deeper understanding of the current state and future prospects of optogenetics in epilepsy treatment.
Collapse
Affiliation(s)
- Marco Ledri
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - My Andersson
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - Jenny Wickham
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden.
| |
Collapse
|
6
|
Sousa F. Brain-Targeted Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14091835. [PMID: 36145583 PMCID: PMC9500829 DOI: 10.3390/pharmaceutics14091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Flávia Sousa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|