1
|
Fuchs S, Rieger V, Tjell AØ, Spitz S, Brandauer K, Schaller-Ammann R, Feiel J, Ertl P, Klimant I, Mayr T. Optical glucose sensor for microfluidic cell culture systems. Biosens Bioelectron 2023; 237:115491. [PMID: 37413826 DOI: 10.1016/j.bios.2023.115491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Glucose is the primary energy source of human cells. Therefore, monitoring glucose inside microphysiological systems (MPS) provides valuable information on the viability and metabolic state of the cultured cells. However, continuous glucose monitoring inside MPS is challenging due to a lack of suitable miniaturized sensors. Here we present an enzymatic, optical glucose sensor element for measurement inside microfluidic systems. The miniaturized glucose sensor (Ø 1 mm) is fabricated together with a reference oxygen sensor onto biocompatible, pressure-sensitive adhesive tape for easy integration inside microfluidic systems. Furthermore, the proposed microfluidic system can be used as plug and play sensor system with existing MPS. It was characterized under cell culture conditions (37 °C and pH 7.4) for five days, exhibiting minor drift (3% day-1). The influence of further cell culture parameters like oxygen concentration, pH, flow rate, and sterilization methods was investigated. The plug-and-play system was used for at-line measurements of glucose levels in (static) cell culture and achieved good agreement with a commercially available glucose sensor. In conclusion, we developed an optical glucose sensor element that can be easily integrated in microfluidic systems and is able to perform stable glucose measurements under cell culture conditions.
Collapse
Affiliation(s)
- Stefanie Fuchs
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9/II, 8010, Graz, Austria
| | - Veronika Rieger
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9/II, 8010, Graz, Austria
| | - Anders Ø Tjell
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9/II, 8010, Graz, Austria
| | - Sarah Spitz
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060, Vienna, Austria
| | - Konstanze Brandauer
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060, Vienna, Austria
| | - Roland Schaller-Ammann
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Jürgen Feiel
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060, Vienna, Austria
| | - Ingo Klimant
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9/II, 8010, Graz, Austria
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9/II, 8010, Graz, Austria.
| |
Collapse
|
2
|
Matthiesen I, Nasiri R, Tamashiro Orrego A, Winkler TE, Herland A. Metabolic Assessment of Human Induced Pluripotent Stem Cells-Derived Astrocytes and Fetal Primary Astrocytes: Lactate and Glucose Turnover. BIOSENSORS 2022; 12:839. [PMID: 36290976 PMCID: PMC9599592 DOI: 10.3390/bios12100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes represent one of the main cell types in the brain and play a crucial role in brain functions, including supplying the energy demand for neurons. Moreover, they are important regulators of metabolite levels. Glucose uptake and lactate production are some of the main observable metabolic actions of astrocytes. To gain insight into these processes, it is essential to establish scalable and functional sources for in vitro studies of astrocytes. In this study, we compared the metabolic turnover of glucose and lactate in astrocytes derived from human induced pluripotent stem cell (hiPSC)-derived Astrocytes (hiAstrocytes) as a scalable astrocyte source to human fetal astrocytes (HFAs). Using a user-friendly, commercial flow-based biosensor, we could verify that hiAstrocytes are as glycogenic as their fetal counterparts, but their normalized metabolic turnover is lower. Specifically, under identical culture conditions in a defined media, HFAs have 2.3 times higher levels of lactate production compared to hiAstrocytes. In terms of glucose, HFAs have 2.1 times higher consumption levels than hiAstrocytes at 24 h. Still, as we describe their glycogenic phenotype, our study demonstrates the use of hiAstrocytes and flow-based biosensors for metabolic studies of astrocyte function.
Collapse
Affiliation(s)
- Isabelle Matthiesen
- Division of Micro and Nanosystems, Department of Intelligent Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Rohollah Nasiri
- Division of Micro and Nanosystems, Department of Intelligent Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177 Solna, Sweden
| | - Alessandra Tamashiro Orrego
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Thomas E. Winkler
- Division of Micro and Nanosystems, Department of Intelligent Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Institute of Microtechnology & Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Anna Herland
- Division of Micro and Nanosystems, Department of Intelligent Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177 Solna, Sweden
| |
Collapse
|