1
|
Shalini T, Elakkiya K, Nethrra SU, Varsha J, Ajay Rakkesh R, Balakumar S. Demonstrating the potential of bioactive glass-infused electrospun PVB fibrous patches in atopic dermatitis moisturizing therapy. Int J Pharm 2024; 667:124930. [PMID: 39522838 DOI: 10.1016/j.ijpharm.2024.124930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disorder characterized by pruritic and eczematous lesions. Current treatment modalities often focus on symptomatic relief through topical moisturizers to restore impaired skin barrier function. Bioactive glasses, such as 45S5 and 59S compositions, have gained attention for their potential therapeutic applications in dermatological conditions due to their biocompatibility, bioactivity, and ability to promote wound healing. In this study, we explore the feasibility and efficacy of utilizing electrospun polyvinyl butyral (PVB) fibrous patches infused with bioactive glass particles as a novel approach for moisturizing therapy in AD. The electrospun PVB fibrous patches were fabricated through a simple and scalable electrospinning technique, incorporating bioactive glass particles. Physicochemical properties, including morphology, mechanical strength, and bioactive properties, were characterized using scanning electron microscopy (SEM), tensile testing, and in- vitro bioactivity. Additionally, the protein absorption kinetics of the fibrous patches were evaluated. Furthermore, in-vitro hemocompatibility, cell viability studies and live/dead assay were conducted to assess the biocompatibility of the bioactive glass-infused PVB fibrous patches. Our findings demonstrate that the incorporation of bioactive glass particles into electrospun PVB fibrous patches confers enhanced mechanical properties and sustained release of bioactive ions, providing a promising platform for prolonged moisturizing therapy.
Collapse
Affiliation(s)
- T Shalini
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - K Elakkiya
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - S U Nethrra
- St.Joseph College of Engineering, Chennai 600 119, India
| | - J Varsha
- St.Joseph College of Engineering, Chennai 600 119, India
| | - R Ajay Rakkesh
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, TN, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
2
|
Polak M, Karbowniczek JE, Stachewicz U. Strategies in Electrospun Polymer and Hybrid Scaffolds for Enhanced Cell Integration and Vascularization for Bone Tissue Engineering and Organoids. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2022. [PMID: 39696966 DOI: 10.1002/wnan.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Addressing the demand for bone substitutes, tissue engineering responds to the high prevalence of orthopedic surgeries worldwide and the limitations of conventional tissue reconstruction techniques. Materials, cells, and growth factors constitute the core elements in bone tissue engineering, influencing cellular behavior crucial for regenerative treatments. Scaffold design, including architectural features and porosity, significantly impacts cellular penetration, proliferation, differentiation, and vascularization. This review discusses the hierarchical structure of bone and the process of neovascularization in the context of biofabrication of scaffolds. We focus on the role of electrospinning and its modifications in scaffold fabrication to improve scaffold properties to enhance further tissue regeneration, for example, by boosting oxygen and nutrient delivery. We highlight how scaffold design impacts osteogenesis and the overall success of regenerative treatments by mimicking the extracellular matrix (ECM). Additionally, we explore the emerging field of bone organoids-self-assembled, three-dimensional (3D) structures derived from stem cells that replicate native bone tissue's architecture and functionality. While bone organoids hold immense potential for modeling bone diseases and facilitating regenerative treatments, their main limitation remains insufficient vascularization. Hence, we evaluate innovative strategies for pre-vascularization and discuss the latest techniques for assessing and improving vascularization in both scaffolds and organoids presenting the most commonly used cell lines and biological models. Moreover, we analyze cutting-edge techniques for assessing vascularization, evaluating their advantages and drawbacks to propose complex solutions. Finally, by integrating these approaches, we aim to advance the development of bioactive materials that promote successful bone regeneration.
Collapse
Affiliation(s)
- Martyna Polak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Kraków, Poland
| | - Joanna Ewa Karbowniczek
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Kraków, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Kraków, Poland
| |
Collapse
|
3
|
Temel-Soylu TM, Keçeciler-Emir C, Rababah T, Özel C, Yücel S, Basaran-Elalmis Y, Altan D, Kirgiz Ö, Seçinti İE, Kaya U, Altuğ ME. Green Electrospun Poly(vinyl alcohol)/Gelatin-Based Nanofibrous Membrane by Incorporating 45S5 Bioglass Nanoparticles and Urea for Wound Dressing Applications: Characterization and In Vitro and In Vivo Evaluations. ACS OMEGA 2024; 9:21187-21203. [PMID: 38764625 PMCID: PMC11097359 DOI: 10.1021/acsomega.4c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/21/2024]
Abstract
This study reports the fabrication and characterization of poly(vinyl alcohol) (PVA) and gelatin (Gel)-based nanofiber membranes cross-linked with citric acid (CA) by a green electrospinning method in which nano 45S5 bioglass (BG) and urea were incorporated. Various combinations of PVA, gelatin, and BG were prepared, and nanofiber membranes with average fiber diameters between 238 and 595 nm were fabricated. Morphological, chemical, and mechanical properties, porosity, swelling, water retention, and water vapor transmission rate of the fabricated membranes were evaluated. PVA:Gel (90:10), 15% CA, and 3% BG were determined as the optimum blend for nanofiber membrane fabrication via electrospinning. The membrane obtained using this blend was further functionalized with 10% w/w polymer urea coating by the electrospray method following the cross-linking. In vitro biocompatibility tests revealed that the fabricated membranes were all biocompatible except for the one that functionalized with urea. In vivo macroscopic and histopathological analysis results of PVA/Gel/BG and PVA/Gel/BG/Urea treated wounds indicated increased collagenization and vascularization and had an anti-inflammatory effect. Furthermore, careful examination of the in vivo macroscopic results of the PVA/Gel/BG/Urea membrane indicated its potential to decrease uneven scar formation. In conclusion, developed PVA/Gel/BG and PVA/Gel/BG/Urea electrospun membranes with multifunctional and biomimetic features may have the potential to be used as beneficial wound dressings.
Collapse
Affiliation(s)
- Tülay Merve Temel-Soylu
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Ceren Keçeciler-Emir
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
- Faculty
of Rafet Kayis Engineering, Genetic and Bioengineering Department, Alanya Alaaddin Keykubat University, 07425 Antalya, Türkiye
| | - Taha Rababah
- Nutrition
and Food Technology Department, Jordan University
of Science and Technology, Irbid 3030, Jordan
| | - Cem Özel
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Sevil Yücel
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Yeliz Basaran-Elalmis
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Dilan Altan
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Ömer Kirgiz
- Faculty
of Veterinary, Department of Clinical Sciences, Hatay Mustafa Kemal University, 31060 Hatay, Türkiye
| | - İlke Evrim Seçinti
- Faculty
of Medicine, Department of Pathology, Hatay
Mustafa Kemal University, 31060 Hatay, Türkiye
| | - Ufuk Kaya
- Faculty
of
Veterinary, Department of Biostatistics, Hatay Mustafa Kemal University, 31060 Hatay, Türkiye
| | - Muhammed Enes Altuğ
- Faculty
of Veterinary, Department of Clinical Sciences, Hatay Mustafa Kemal University, 31060 Hatay, Türkiye
| |
Collapse
|
4
|
Polak M, Ura DP, Berniak K, Szewczyk PK, Marzec MM, Stachewicz U. Interfacial blending in co-axially electrospun polymer core-shell fibers and their interaction with cells via focal adhesion point analysis. Colloids Surf B Biointerfaces 2024; 237:113864. [PMID: 38522283 DOI: 10.1016/j.colsurfb.2024.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Electrospun polymer scaffolds have gained prominence in biomedical applications, including tissue engineering, drug delivery, and wound dressings, due to their customizable properties. As the interplay between cells and materials assumes fundamental significance in biomaterials research, understanding the relationship between fiber properties and cell behaviour is imperative. Nevertheless, altering fiber properties introduces complexity by intertwining mechanical and surface chemistry effects, challenging the differentiation of their individual impacts on cell behaviour. Core-shell fibers present an appealing solution, enabling the control of mechanical properties of scaffolds, flexibility in material and drug selection, efficient encapsulation, strong protection of bioactive drugs against harsh environments, and controlled, prolonged drug release. This study addresses a key challenge in core-shell fiber design related to the blending effect between core and shell polymers. Two types of fibers, PMMA and core-shell PC-PMMA, were electrospun, and thorough analyses confirmed the desired core-shell structure in PC-PMMA fibers. Surface chemistry analysis revealed PC diffusion to the PMMA shell of the core-shell fiber during electrospinning, subsequently prompting an investigation of the fiber's surface potential. Conducting cellular studies on osteoblasts by super-resolution confocal microscopy provided insights into the direct influence of interfacial polymer blending and, consequently, altered fiber surface and mechanical properties on cell focal adhesion points, bridging the gap between material attributes and cell responses in core-shell fibers.
Collapse
Affiliation(s)
- Martyna Polak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Al. A. Mickiewicza 30, Kraków 30-059, Poland
| | - Daniel P Ura
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Al. A. Mickiewicza 30, Kraków 30-059, Poland
| | - Krzysztof Berniak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Al. A. Mickiewicza 30, Kraków 30-059, Poland
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Al. A. Mickiewicza 30, Kraków 30-059, Poland
| | - Mateusz M Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Al. A. Mickiewicza 30, Kraków 30-059, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Al. A. Mickiewicza 30, Kraków 30-059, Poland.
| |
Collapse
|
5
|
Gürtler AL, Rades T, Heinz A. Electrospun fibers for the treatment of skin diseases. J Control Release 2023; 363:621-640. [PMID: 37820983 DOI: 10.1016/j.jconrel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Skin diseases are among the most common diseases in the global population and with the growth of the aging population, they represent an increasing burden to healthcare systems worldwide. Even though they are rarely life-threatening, the suffering for those affected is high due to the visibility and physical discomfort related to these diseases. Typical symptoms of skin diseases include an inflamed, swollen or itchy skin, and therefore, there is a high demand for effective therapy options. In recent years, electrospinning has attracted considerable interest in the field of drug delivery. The technique allows producing multifunctional drug-loaded fibrous patches from various natural and synthetic polymers with fiber diameters in the nano- and micrometer range, suitable for the treatment of a wide variety of skin diseases. The great potential of electrospun fiber patches not only lies in their tunable drug release properties and the possibility to entrap a variety of therapeutic compounds, but they also provide physical and mechanical protection to the impaired skin area, exhibit a high surface area, allow gas exchange, absorb exudate due to their porous structure and are cytocompatible and biodegradable. In the case of wound healing, cell adhesion is promoted due to the resemblance of the electrospun fibers to the structure of the native extracellular matrix. This review gives an overview of the potential applications of electrospun fibers in skin therapy. In addition to the treatment of bacterial, diabetic and burn wounds, focus is placed on inflammatory diseases such as atopic dermatitis and psoriasis, and therapeutic options for the treatment of skin cancer, acne vulgaris and herpes labialis are discussed. While we aim to emphasize the great potential of electrospun fiber patches for the treatment of skin diseases with this review paper, we also highlight challenges and limitations of current research in the field.
Collapse
Affiliation(s)
- Anna-Lena Gürtler
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Farkouh C, Anthony M, Abdi P, Santiago N, Farkouh M. Novel Vehicles For Drug Delivery in Atopic Dermatitis: A Narrative Review. Dermatol Pract Concept 2023; 13:dpc.1304a216. [PMID: 37992345 PMCID: PMC10656133 DOI: 10.5826/dpc.1304a216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) causes dry and itchy skin and inflammation that severely impairs the quality of life of affected children and adults. While topical glucocorticosteroid application is typically the first-line treatment of choice, steroid treatment is associated with side effects and, increasingly, patient concerns about prolonged use. Novel drugs and drug delivery vehicles are required for patients with AD. OBJECTIVES To summarize the current literature on novel topical agents for atopic dermatitis and novel delivery vehicles. METHODS A literature search was conducted, and a narrative review was compiled to summarize recent evidence. RESULTS Novel topical drugs approved or in late-phase clinical trials for the treatment of AD include the Janus kinase inhibitor ruxolitinib, the phosphodiesterase-4 inhibitors crisaborole, and roflumilast, and the aryl hydrocarbon receptor activator tapinarof. While current topical drugs for AD are delivered via creams, ointments, gels, and related vehicles, novel delivery approaches such as electrospun patches, sprays, liposomes, nanoparticles, and lasers are being developed to enhance transdermal delivery, reduce side effects, and increase treatment adherence. CONCLUSIONS Topical application of creams or ointments is currently the predominant vehicle for the delivery of atopic dermatitis drugs. In vitro studies on novel vehicles show promising results to overcome the issues associated with topical delivery. Still, these findings have to be corroborated by controlled studies with human patients in the future.
Collapse
Affiliation(s)
| | - Michelle Anthony
- University of Arizona College of Medicine, Department of Pathology, Tucson, AZ, USA
| | - Parsa Abdi
- Memorial University, St. Johns, Newfoundland, CAN
| | - Natalia Santiago
- Universidad Autónoma de Guadalajara School of Medicine, Guadalajara, MEX
| | | |
Collapse
|
7
|
Anaya-Mancipe JM, Queiroz VM, dos Santos RF, Castro RN, Cardoso VS, Vermelho AB, Dias ML, Thiré RMSM. Electrospun Nanofibers Loaded with Plantago major L. Extract for Potential Use in Cutaneous Wound Healing. Pharmaceutics 2023; 15:1047. [PMID: 37111535 PMCID: PMC10144042 DOI: 10.3390/pharmaceutics15041047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Plantago major L. is a plant available worldwide that has been traditionally used for several medical applications due to its wound healing, anti-inflammatory, and antimicrobial properties. This work aimed to develop and evaluate a nanostructured PCL electrospun dressing with P. major extract encapsulated in nanofibers for applications in wound healing. The extract from leaves was obtained by extraction in a mixture of water:ethanol = 1:1. The freeze-dried extract presented a minimum inhibitory concentration (MIC) for Staphylococcus Aureus susceptible and resistant to methicillin of 5.3 mg/mL, a high antioxidant capacity, but a low content of total flavonoids. Electrospun mats without defects were successfully produced using two P. major extract concentrations based on the MIC value. The extract incorporation in PCL nanofibers was confirmed using FTIR and contact angle measurements. The PCL/P. major extract was evaluated using DSC and TGA demonstrating that the incorporation of the extract decreases the thermal stability of the mats as well as the degree of crystallinity of PCL-based fibers. The P. major extract incorporation on electrospun mats produced a significant swelling degree (more than 400%) and increased the capacity of adsorbing wound exudates and moisture, important characteristics for skin healing. The extract-controlled release evaluated using in vitro study in PBS (pH, 7.4) shows that the P. major extract delivery from the mats occurs in the first 24 h, demonstrating their potential capacity to be used in wound healing.
Collapse
Affiliation(s)
- Javier M. Anaya-Mancipe
- COPPE/Program of Metallurgical and Materials Engineering—PEMM, Universidade Federal de Rio de Janeiro—UFRJ, Rio de Janeiro 21941-599, RJ, Brazil; (J.M.A.-M.)
- Institute of Macromolecules Professor Eloisa Mano—IMA, Universidade Federal do Rio de Janeiro—UFRJ, Rio de Janeiro 21941-598, RJ, Brazil
| | - Vanessa M. Queiroz
- COPPE/Program of Metallurgical and Materials Engineering—PEMM, Universidade Federal de Rio de Janeiro—UFRJ, Rio de Janeiro 21941-599, RJ, Brazil; (J.M.A.-M.)
| | - Rafael F. dos Santos
- Chemistry Institute, Universidade Federal Rural do Rio de Janeiro—UFRRJ, Seropédica 23890-000, RJ, Brazil
| | - Rosane N. Castro
- Chemistry Institute, Universidade Federal Rural do Rio de Janeiro—UFRRJ, Seropédica 23890-000, RJ, Brazil
| | - Verônica S. Cardoso
- Bioinovar—Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro—UFRJ, Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane B. Vermelho
- Bioinovar—Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro—UFRJ, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marcos L. Dias
- Institute of Macromolecules Professor Eloisa Mano—IMA, Universidade Federal do Rio de Janeiro—UFRJ, Rio de Janeiro 21941-598, RJ, Brazil
| | - Rossana M. S. M. Thiré
- COPPE/Program of Metallurgical and Materials Engineering—PEMM, Universidade Federal de Rio de Janeiro—UFRJ, Rio de Janeiro 21941-599, RJ, Brazil; (J.M.A.-M.)
| |
Collapse
|
8
|
Kazachenko AS, Issaoui N, Fetisova OY, Berezhnaya YD, Al-Dossary OM, Akman F, Kumar N, Bousiakou LG, Kazachenko AS, Ionin VA, Elsuf’ev EV, Miroshnikova AV. Comprehensive Study of the Ammonium Sulfamate-Urea Binary System. Molecules 2023; 28:470. [PMID: 36677528 PMCID: PMC9861415 DOI: 10.3390/molecules28020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The physicochemical properties of binary systems are of great importance for the application of the latter. We report on the investigation of an ammonium sulfamate-urea binary system with different component ratios using a combination of experimental (FTIR, XRD, TGA/DSC, and melting point) and theoretical (DFT, QTAIM, ELF, RDG, ADMP, etc.) techniques. It is shown that, at a temperature of 100 °C, the system under study remains thermally and chemically stable for up to 30 min. It was established using X-ray diffraction analysis that the heating time barely affects the X-ray characteristics of the system. Data on the aggregate states in specified temperature ranges were obtained with thermal analysis and determination of the melting point. The structures of the ammonium sulfamate-urea system with different component ratios were optimized within the density functional theory. The atom-centered density matrix propagation calculation of the ammonium sulfamate-urea system with different component ratios was performed at temperatures of 100, 300, and 500 K. Regardless of the component ratio, a regular increase in the potential energy variation (curve amplitude) with an increase in temperature from 100 to 500 K was found.
Collapse
Affiliation(s)
- Aleksandr S. Kazachenko
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
- Department of Biological Chemistry with Courses in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, St. Partizan Zheleznyak, Bld. 1, 660022 Krasnoyarsk, Russia
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Olga Yu. Fetisova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
| | - Yaroslava D. Berezhnaya
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
| | - Omar M. Al-Dossary
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Feride Akman
- Vocational School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey
| | - Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Leda G. Bousiakou
- IMD Laboratories Co., R&D Section, Lefkippos Technology Park, NCSR Demokritos, P.O. Box 60037, 15130 Athens, Greece
| | - Anna S. Kazachenko
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Vladislav A. Ionin
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
| | - Evgeniy V. Elsuf’ev
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
| | - Angelina V. Miroshnikova
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
| |
Collapse
|
9
|
Michailidou G, Bikiaris DN. Novel 3D-Printed Dressings of Chitosan-Vanillin-Modified Chitosan Blends Loaded with Fluticasone Propionate for Treatment of Atopic Dermatitis. Pharmaceutics 2022; 14:1966. [PMID: 36145714 PMCID: PMC9503579 DOI: 10.3390/pharmaceutics14091966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, the blends of CS and Vanillin-CS derivative (VACS) were utilized for the preparation of printable inks for their application in three-dimensional (3D) printing procedures. Despite the synergic interaction between the blends, the addition of ι-carrageenan (iCR) as a thickening agent was mandatory. Their viscosity analysis was conducted for the evaluation of the optimum CS/VACS ratio. The shear thinning behavior along with the effect of the temperature on viscosity values were evident. Further characterization of the 3D-printed structures was conducted. The effect of the CS/VACS ratio was established through swelling and contact angle measurements. An increasing amount of VACS resulted in lower swelling ability along with higher hydrophobicity. Fluticasone propionate (FLU), a crystalline synthetic corticosteroid, was loaded into the CS/VACS samples. The drug was loaded in its amorphous state, and consequently, its in vitro release was significantly enhanced. An initial burst release, followed by a sustained release profile, was observed.
Collapse
Affiliation(s)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
10
|
Zhou Y, Wang M, Yan C, Liu H, Yu DG. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022; 12:1254. [PMID: 36139093 PMCID: PMC9496154 DOI: 10.3390/biom12091254] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oral ulcers affect oral and systemic health and have high prevalence in the population. There are significant individual differences in the etiology and extent of the disease among patients. In the treatment of oral ulcers, nanofiber films can control the drug-release rate and enable long-term local administration. Compared to other drug-delivery methods, nanofiber films avoid the disadvantages of frequent administration and certain side effects. Electrospinning is a simple and effective method for preparing nanofiber films. Currently, electrospinning technology has made significant breakthroughs in energy-saving and large-scale production. This paper summarizes the polymers that enable oral mucosal adhesion and the active pharmaceutical ingredients used for oral ulcers. Moreover, the therapeutic effects of currently available electrospun nanofiber films on oral ulcers in animal experiments and clinical trials are investigated. In addition, solvent casting and cross-linking methods can be used in conjunction with electrospinning techniques. Based on the literature, more administration systems with different polymers and loading components can be inspired. These administration systems are expected to have synergistic effects and achieve better therapeutic effects. This not only provides new possibilities for drug-loaded nanofibers but also brings new hope for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Yangqi Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Yan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
11
|
Stachewicz U. Application of Electrospun Polymeric Fibrous Membranes as Patches for Atopic Skin Treatments. ADVANCES IN POLYMER SCIENCE 2022. [DOI: 10.1007/12_2022_139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|