1
|
Moldovan A, Cuc S, Gasparik C, Sarosi C, Moldovan M, Ilie N, Petean I, Rusu LM, Ionescu A, Pastrav M. Effect of Experimental Bleaching Gels With Enzymes on Composite and Enamel. Int Dent J 2025; 75:1234-1245. [PMID: 39266399 PMCID: PMC11976588 DOI: 10.1016/j.identj.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION AND AIMS Potential secondary or toxic effects of peroxide-based whitening gels have driven the search for alternative methods that use natural compounds with gentle action on tooth enamel that provide remineralizing benefits. METHODS This study introduces four innovative experimental whitening gels (GC, G1, G3, G4) formulated with enzymes (Bromelaine and Papaine) and natural extracts, along with SiO2. The efficacy of these gels was tested on nanohybrid dental composite (EsCOM100, Spident Company) and dental enamel stained with coffee and natural juice (Tedi) over 10 days. The structural changes in samples before and after bleaching were examined using scanning electron microscopy and atomic force microscopy. Additionally, cytotoxicity tests were conducted on the gels using mesenchymal stem cells from human dental pulp (dMSC) and human keratinocytes (HaCaT). Antibacterial activity was assessed on five strains (Streptococcus mutans. Porphyromonas gingivalis; Enterococcus faecalis; Escherichia coli; Staphylococcus aureus). RESULTS Coffee and natural juice stains significantly increase the roughness of composite and enamel surfaces by forming deposits. The enzymatic action of bromelain and papain effectively disorganizes and removes these clusters, significantly reducing surface roughness. CONCLUSION Notably, the gel containing papain and nanostructured SiO2 proved to be the most effective in removing coffee stains from both composite surfaces and enamel. On the other hand, the gel with bromelain and nanostructured SiO2 was the most efficient in removing natural juice stains. The absence of SiO2 in the experimental gels slightly decreased the enzymes' effectiveness in stain removal. The antibacterial activity observed in the experimental gels is attributed solely to the enzymatic compounds.
Collapse
Affiliation(s)
- Amalia Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Stanca Cuc
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, Cluj-Napoca, Romania.
| | - Cristina Gasparik
- Department of Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Codruța Sarosi
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, Cluj-Napoca, Romania
| | - Marioara Moldovan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, Cluj-Napoca, Romania.
| | - Nicoleta Ilie
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig - Maximilians - University, Munich, Germany
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Laura Monica Rusu
- Department of Dental Materials, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Ionescu
- Department of Biomedical, Surgical and Dental Sciences, Oral Microbiology and Biomaterials Laboratory, Università Degli Studi di Milano, Milano, Italy
| | - Mihaela Pastrav
- Department of Orthodontics, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Guruswamy Pandian AP, Ramachandran AK, Kodaganallur Pitchumani P, Mathai B, Thomas DC. Evaluation of Anti-Biofilm Property of Zirconium Oxide Nanoparticles on Streptococcus mutans and Enterococcus faecalis: An In Vitro Study. Cureus 2025; 17:e77199. [PMID: 39925594 PMCID: PMC11806967 DOI: 10.7759/cureus.77199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction The prevalence of dental caries and endodontic infections caused by bacteria such as Streptococcus mutans and Enterococcus faecalis poses a significant challenge in root canal treatment. These pathogens exhibit significant resistance to antimicrobial treatments due to their ability to form biofilms, complex microbial communities encased in a self-produced extracellular polymeric substance (EPS). Despite advancements in treatment strategies, the failure rate remains high due to the difficulty in completely eradicating microbial populations within the complex root canal system. The increasing prevalence of antibiotic resistance has driven the need for novel antimicrobial agents and strategies to target biofilms. In this study, we evaluated the potential of zirconium oxide nanoparticles (ZrO2 NPs) in eradicating biofilms formed by S. mutans and E. faecalis, two key pathogens involved in these infections. Materials and methods ZrO2 NPs were characterized and evaluated for their antimicrobial properties against E. faecalis and S. mutans biofilms. The nanoparticles were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Biofilm quantification was performed using a crystal violet staining assay. The minimum biofilm eradication concentrations of ZrO2 NPs against the bacterial strains were determined. Results ZrO2 NPs used in our study were found to have zirconium predominantly with no impurities. Also, the average particle size was less than 30 nm with a spherical shape arranged in clusters. These characterizations were performed considering the vital role of these properties in obtaining the desired antibacterial/anti-biofilm properties of nanoparticles. ZrO2 NPs were capable of eradicating the biofilm formed by both S. mutans and E. faecalis at concentrations greater than 22.8 μg/mL. The results suggest that ZrO2 NPs could be used as a novel approach for combating biofilm-related infections. Conclusion Our findings suggest that ZrO2 NPs have the potential to be a promising antibiofilm agent in root canal treatment, offering a new approach to combat these persistent infections. Further research is warranted to explore the full potential of nanomaterials in improving treatment outcomes in endodontic infections.
Collapse
Affiliation(s)
| | | | | | | | - Davis C Thomas
- Orofacial Pain, Eastman Institute for Oral Health, Rochester, USA
- Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, USA
| |
Collapse
|
3
|
Bukhari SH, Abraham D, Mahesh S. Antimicrobial Effects of Formulations of Various Nanoparticles and Calcium Hydroxide as Intra-canal Medications Against Enterococcus faecalis: A Systematic Review. Cureus 2024; 16:e70382. [PMID: 39469360 PMCID: PMC11514526 DOI: 10.7759/cureus.70382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The combination of calcium hydroxide (Ca(OH)₂) and nanoparticles (NPs) offers a promising approach to improving the efficacy of intra-canal treatments. Their synergistic effects can enhance antimicrobial action, improve penetration, and promote better healing outcomes in endodontic therapy. This review article examines the antimicrobial efficacy of various nanoparticles combined with Ca(OH)₂ against Enterococcus faecalis (E. faecalis) compared to Ca(OH)₂ alone as an intra-canal medicament. The analysis is based on in vitro studies involving bacterial inoculation on human-extracted teeth. Publications from 2013 to 2024 were retrieved from databases such as PubMed, Scopus, the Cochrane Library, and EBSCOhost and were screened according to specific inclusion criteria. Ultimately, 11 studies met these criteria for inclusion in the systematic review. A meta-analysis was not conducted due to the heterogeneity of the studies regarding the duration of medicament application, analytical methods, and result interpretations. The results indicate that NPs combined with calcium hydroxide exhibit superior bactericidal effects compared to Ca(OH)₂ alone, suggesting their potential as effective intra-canal medicaments. Thus, a systematic review concluded that nanoparticle-based Ca(OH)₂ intra-canal medicaments exhibit superior antibacterial/antimicrobial capabilities against E. faecalis when compared to Ca(OH)₂individually.
Collapse
Affiliation(s)
- Seema H Bukhari
- Conservative Dentistry and Endodontics, Manav Rachna Dental College, Faridabad, IND
| | - Dax Abraham
- Conservative Dentistry and Endodontics, Manav Rachna Dental College, Faridabad, IND
| | - Shakila Mahesh
- Microbiology, Manav Rachna Dental College, Faridabad, IND
| |
Collapse
|
4
|
Roig X, Halbaut L, Elmsmari F, Pareja R, Arrien A, Duran-Sindreu F, Delgado LM, Espina M, García ML, Sánchez JAG, Sánchez-López E. Calcium hydroxide-loaded nanoparticles dispersed in thermosensitive gel as a novel intracanal medicament. Int Endod J 2024; 57:907-921. [PMID: 38374518 DOI: 10.1111/iej.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/21/2024]
Abstract
AIM Design, produce and assess the viability of a novel nanotechnological antibacterial thermo-sensible intracanal medicament This involves encapsulating calcium hydroxide (Ca(OH)2) within polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) and dispersing them in a thermosensitive gel (Ca(OH)2-NPs-gel). In addition, perform in vitro and ex vivo assessments to evaluate tissue irritation and penetration capacity into dentinal tubules in comparison to free Ca(OH)2. METHODOLOGY Reproducibility of Ca(OH)₂-NPs was confirmed by obtaining the average size of the NPs, their polydispersity index, zeta potential and entrapment efficiency. Moreover, rheological studies of Ca(OH)2-NPs-gel were carried out with a rheometer, studying the oscillatory stress sweep, the mean viscosity value, frequency and temperature sweeps. Tolerance was assessed using the membrane of an embryonated chicken egg. In vitro Ca(OH)2 release was studied by direct dialysis in an aqueous media monitoring the amount of Ca(OH)2 released. Six extracted human teeth were used to study the depth of penetration of fluorescently labelled Ca(OH)2-NPs-gel into the dentinal tubules and significant differences against free Ca(OH)2 were calculated using one-way anova. RESULTS Ca(OH)2-NPs-gel demonstrated to be highly reproducible with an average size below 200 nm, a homogeneous NPs population, negative surface charge and high entrapment efficiency. The analysis of the thermosensitive gel allowed us to determine its rheological characteristics, showing that at 10°C gels owned a fluid-like behaviour meanwhile at 37°C they owned an elastic-like behaviour. Ca(OH)2-NPs-gel showed a prolonged drug release and the depth of penetration inside the dentinal tubules increased in the most apical areas. In addition, it was found that this drug did not produce irritation when applied to tissues such as eggs' chorialantoidonic membrane. CONCLUSION Calcium hydroxide-loaded PLGA NPs dispersed in a thermosensitive gel may constitute a suitable alternative as an intracanal antibacterial medicament.
Collapse
Affiliation(s)
- Xavier Roig
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Firas Elmsmari
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Rubén Pareja
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Aizea Arrien
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Fernando Duran-Sindreu
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Luis María Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, Spain
| |
Collapse
|
5
|
Leelapornpisid W, Wanwatanakul P, Mahatnirunkul T. Efficacy of calcium hydroxide-loaded poly(lactic-co-glycolic acid) biodegradable nanoparticles as an intracanal medicament against endodontopathogenic microorganisms in a multi-species biofilm model. AUST ENDOD J 2024; 50:89-96. [PMID: 37947038 DOI: 10.1111/aej.12812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 09/29/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
This study aimed to evaluate the antimicrobial activity of calcium hydroxide-loaded poly(lactic-co-glycolic acid) nanoparticles (CH-loaded PLGA NPs) on multi-species biofilms. Human root blocks were prepared (n = 40), and multi-species suspensions of Candida albicans, Enterococcus faecalis and Streptococcus gordonii were incubated within the root canals for 21 days. Canals (n = 10/group) were then medicated with saline solution (negative control), chlorhexidine (positive control), calcium hydroxide and CH-loaded PLGA NPs for 7 days. Samples taken from the 0.1 mm root canal dentin were collected, and cell growth was detected by culture on BHI agar. The viable cell count of the Ca(OH)2, chlorhexidine gel and CH-loaded PLGA NPs group was significantly lower than the normal saline group (p < 0.001). CH-loaded PLGA NPs demonstrated a significant lower viable cell than Ca(OH)2 (p < 0.001); it has potential as a medicament for endodontic therapy.
Collapse
Affiliation(s)
- Warat Leelapornpisid
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | | | - Thanisorn Mahatnirunkul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
6
|
Mohamed AA, Fayyad DM, El-Telbany M, Mohamed DAA. Antibacterial biofilm efficacy of calcium hydroxide loaded on Gum Arabic nanocarrier: an in-vitro study. BMC Oral Health 2024; 24:215. [PMID: 38341565 PMCID: PMC10859034 DOI: 10.1186/s12903-024-03941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND An innovative intracanal medication formulation was introduced in the current study to improve the calcium hydroxide (Ca(OH)2) therapeutic capability against resistant Enterococcus faecalis (E. faecalis) biofilm. This in-vitro study aimed to prepare, characterize, and evaluate the antibacterial efficiency of Ca(OH)2 loaded on Gum Arabic (GA) nanocarrier (Ca(OH)2-GA NPs) and to compare this efficiency with conventional Ca(OH)2, Ca(OH)2 nanoparticles (NPs), GA, and GA NPs. MATERIALS AND METHODS The prepared nanoparticle formulations for the tested medications were characterized using Transmission Electron Microscope (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). 141 human mandibular premolars were selected, and their root canals were prepared. Twenty-one roots were then sectioned into 42 tooth slices. All prepared root canals (n = 120) and teeth slices (n = 42) were divided into six groups according to the intracanal medication used. E. faecalis was inoculated in the samples for 21 days to form biofilms, and then the corresponding medications were applied for 7 days. After medication application, the residual E. faecalis bacteria were assessed using CFU, Q-PCR, and SEM. Additionally, the effect of Ca(OH)2-GA NPs on E. faecalis biofilm genes (agg, ace, and efaA) was investigated using RT-PCR. Data were statistically analyzed at a 0.05 level of significance. RESULTS The synthesis of NPs was confirmed using TEM. The results of the FTIR proved that the Ca(OH)2 was successfully encapsulated in the GA NPs. Ca(OH)2-GA NPs caused a significant reduction in the E. faecalis biofilm gene expression when compared to the control (p < 0.001). There were significant differences in the E. faecalis CFU mean count and CT mean values between the tested groups (p < 0.001) except between the Ca(OH)2 and GA CFU mean count. Ca(OH)2-GA NPs showed the least statistical E. faecalis mean count among other groups. SEM observation showed that E. faecalis biofilm was diminished in all treatment groups, especially in the Ca(OH)2-GA NPS group when compared to the control group. CONCLUSIONS Ca(OH)2 and GA nanoparticles demonstrate superior anti-E. faecalis activity when compared to their conventional counterparts. Ca(OH)2-GA NPs showed the best antibacterial efficacy in treating E. faecalis biofilm. The tested NP formulations could be considered as promising intracanal medications.
Collapse
Affiliation(s)
- Alshafey Alsayed Mohamed
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522, Egypt
| | - Dalia Mukhtar Fayyad
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522, Egypt
| | - Mohamed El-Telbany
- Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Dalia Abd-Allah Mohamed
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522, Egypt.
- Department of Endodontics, Faculty of Dentistry, Sinai University, Kantara, Ismailia, Egypt.
| |
Collapse
|
7
|
Folle C, Marqués AM, Mallandrich M, Suñer-Carbó J, Halbaut L, Sánchez-López E, López-Machado AL, Díaz-Garrido N, Badia J, Baldoma L, Espina M, García ML, Calpena AC. Colloidal hydrogel systems of thymol-loaded PLGA nanoparticles designed for acne treatment. Colloids Surf B Biointerfaces 2024; 234:113678. [PMID: 38194839 DOI: 10.1016/j.colsurfb.2023.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/11/2024]
Abstract
Thymol-loaded PLGA nanoparticles (TH-NPs) were incorporated into different semi-solid formulations using variable gelling agents (carbomer, polysaccharide and poloxamer). The formulations were physicochemically characterized in terms of size, polydispersity index and zeta potential. Moreover, stability studies were performed by analyzing the backscattering profile showing that the gels were able to increase the nanoparticles stability at 4 °C. Moreover, rheological properties showed that all gels were able to increase the viscosity of TH-NPs with the carbomer gels showing the highest values. Moreover, the observation of carbomer dispersed TH-NPs under electron microscopical techniques showed 3D nanometric cross-linked filaments with the NPs found embedded in the threads. In addition, cytotoxicity studies showed that keratinocyte cells in contact with the formulations obtained cell viability values higher than 70 %. Furthermore, antimicrobial efficacy was assessed against C. acnes and S. epidermidis showing that the formulations eliminated the pathogenic C. acnes but preserved the resident S. epidermidis which contributes towards a healthy skin microbiota. Finally, biomechanical properties of TH-NPs dispersed in carbomer gels in contact with healthy human skin were studied showing that they did not alter skin properties and were able to reduce sebum which is increased in acne vulgaris. As a conclusion, TH-NPs dispersed in semi-solid formulations and, especially in carbomer gels, may constitute a suitable solution for the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain.
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain.
| | - Ana Laura López-Machado
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain; Research Institute Sant Joan de Déu (IR‑SJD), Barcelona 08950, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain; Research Institute Sant Joan de Déu (IR‑SJD), Barcelona 08950, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain; Research Institute Sant Joan de Déu (IR‑SJD), Barcelona 08950, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - María Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
8
|
Hameed S, Antony DP, Shanmugam R, Raghu S, Adimulapu HS. Enhancing Antimicrobial Efficacy and Synergistic Effects of Nano-Silica-Based Combinations With Doxycycline, Metronidazole, and Ciprofloxacin Against Enterococcus faecalis Biofilms. Cureus 2024; 16:e54668. [PMID: 38524038 PMCID: PMC10960229 DOI: 10.7759/cureus.54668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Enterococcus faecalis biofilm formation within root canals poses a challenging problem in endodontics, often leading to treatment failure. To combat this issue, nanotechnology offers a promising avenue for enhancing antimicrobial efficacy. This study explores the potential synergistic effects of combining nanoscale silica particles with conventional antibiotics, including doxycycline, metronidazole, and ciprofloxacin, against E. faecalis biofilms. The unique characteristics of silica nanoparticles, such as their increased reactivity and ability to be functionalized with other compounds, make them ideal candidates for augmenting antibiotic efficacy. This research investigates the antimicrobial properties of these silica-based combinations and their potential to eliminate or inhibit E. faecalis biofilms more effectively than conventional treatments. Methodology: The methods involved the preparation of nanostructured silica particles and their combination with doxycycline, Flagyl, and ciprofloxacin at subinhibitory concentrations. These combinations were then tested against E. faecalis biofilms using the agar well diffusion technique. RESULTS Preliminary results suggested that the synergistic interactions between silica nanoparticles and antibiotics can significantly enhance antimicrobial efficacy. The combined treatment exhibited superior inhibitory effects on E. faecalis compared to antibiotics or silica nanoparticles alone (P < 0.05). Conclusions: This study sheds light on the potential of nanoscale silica-based combinations to address the challenges posed by E. faecalis biofilms in endodontics. Understanding the mechanisms of synergy between nanoparticles and antibiotics can pave the way for the development of more effective and targeted strategies for root canal disinfection, ultimately improving the success rates of endodontic treatments.
Collapse
Affiliation(s)
- Shahul Hameed
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Delphine P Antony
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Sandhya Raghu
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Hima Sandeep Adimulapu
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
9
|
Elmsmari F, Delgado LM, Duran-Sindreu F, Pérez RA, García ML, Teulé Trull M, Afrashtehfar KI, González JA, Sánchez-López E. Novel strategies enhancing endodontic disinfection: Antibacterial biodegradable calcium hydroxide nanoparticles in an ex vivo model. Int J Pharm 2023; 648:123627. [PMID: 37984620 DOI: 10.1016/j.ijpharm.2023.123627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Due to the high failure rates associated to endodontic disinfection, this study aimed to investigate the antibacterial properties of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with Ca(OH)2 for endodontic disinfection procedures. Ca(OH)2 NPs production and physicochemical characterization were carried out as well as multiple antibacterial tests using three bacterial strains and an ex vivo model of endodontic infection with extracted human teeth. Agar diffusion test and broth dilution determined the inhibition growth zones (n = 5) and the minimal inhibitory concentration (MIC, n = 5), respectively. Cell viability was assessed using Live/Dead staining with confocal microscopy (n = 5). Data was analysed using ANOVA followed by post-hoc analysis. After 24 h of incubation, Ca(OH)₂ NPs demonstrated a MIC of 10 µg/mL for Porphyromonas gingivalis (p < 0.001) and Enterococcus faecalis and 5 µg/mL for Fusobacterium nucleatum (p < 0.001). Although the agar diffusion test did not exhibit any inhibition area for Ca(OH)2 nor for Ca(OH)₂ NPs, this was probably due to the buffering effect of the agar medium. However, the antibacterial capacity was confirmed in an ex vivo model, where instrumentalized teeth were infected with Enterococcus Faecalis and treated after 28 days of culture. A significant reduction in bacterial metabolic activity was confirmed for Ca(OH)2 NPs (40 % reduction with a single dose) and confirmed by Live/Dead staining. In conclusion, Ca(OH)₂-loaded PLGA NPs present promising antibacterial efficacy for endodontic disinfection procedures.
Collapse
Affiliation(s)
- Firas Elmsmari
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, PO Box 346, United Arab Emirates; Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, PO Box 346, United Arab Emirates
| | - Luis María Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Fernando Duran-Sindreu
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Román A Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain; Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28029 Madrid, Spain
| | - Míriam Teulé Trull
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain
| | - Kelvin I Afrashtehfar
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, PO Box 346, United Arab Emirates; Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; Artificial Intelligence Research Center (AIRC), Ajman University, Ajman PO Box 346, United Arab Emirates.
| | - José Antonio González
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain.
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain; Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28029 Madrid, Spain; Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain.
| |
Collapse
|