de Castro Carvalho Silva L, Cunha Dos Reis LF, Malaquias LCC, Carvalho FC, Novaes RD, Marques MJ. Impact of nanostructured formulations for schistosomiasis treatment: a systematic review of in vivo preclinical evidence.
J Pharm Pharmacol 2025;
77:341-351. [PMID:
39820345 DOI:
10.1093/jpp/rgae155]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND
Schistosomiasis is a neglected tropical disease caused by Schistosoma sp., and praziquantel (PZQ) is the first-line treatment. However, traditional PZQ formulations have low solubility and fast metabolism, limiting its effectiveness. Thus, nanoparticles have been proposed to improve the bioavailability and efficacy of poorly soluble antischistosomal drugs.
AIMS
This systematic review used in vivo preclinical studies to map the available evidence and compare the efficacy of free PZQ and PZQ-based nanostructured formulations (N-PZQ) for schistosomiasis treatment.
METHODS
PubMed, Embase, Scopus, and Web of Science were searched, and 1186 experimental studies published between 1974 and 2024 were screened. Parasitological, histopathological, pharmacokinetic, and toxicological outcomes were evaluated.
RESULTS
Twelve relevant studies were identified exploring N-PZQ formulations based on liposomes, nanoliposomes, and nanocrystals. N-PZQ demonstrated better therapeutic efficacy than free PZQ, reducing parasite load, modifying oogram profiles, and down-regulating liver granuloma development (number and size). N-PZQ also exhibited improved pharmacokinetic profile, with enhanced bioavailability and longer half-life, as well as reduced toxicity (cytotoxicity, genotoxicity, and hepatotoxicity) compared to free PZQ.
CONCLUSION
PZQ-based nanostructured formulations represent a promising strategy to enhance schistosomiasis treatment by improving chemotherapy efficacy, optimizing antiparasitic responses, pharmacokinetics, and reducing drug toxicity.
Collapse