1
|
Rodriguez A, Yu M, Phoo MT, Holinstat M, Schwendeman A. Antiplatelet Effects of DMPC-Based Synthetic High-Density Lipoproteins: Exploring Particle Structure and Noncholesterol Efflux Mechanisms. Mol Pharm 2025; 22:1305-1317. [PMID: 39888835 DOI: 10.1021/acs.molpharmaceut.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Platelet activation is a key factor in the development of cardiovascular diseases. High-density lipoprotein (HDL) is known for its cardioprotective activities including antithrombotic actions. While HDL mimetics have been explored for their potential to regulate thrombosis, their influence on platelet activity remains unclear. This study explores the capacity of synthetic HDL (sHDL) to modulate platelet function and investigates the underlying mechanisms. We examined the effects of sHDL, formulated with various ApoA1 mimetic peptides (18A, 5A, and 22A) and full-length ApoA1 protein, all complexed with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), on platelet function. DMPC-based sHDL demonstrated pronounced antiplatelet effects across all formulations. Comparison with DMPC micelles showed that all sHDL molecules were more effective, highlighting the crucial role of the protein-phospholipid complex in reducing platelet reactivity. Further analysis revealed that DMPC sHDL dose-dependently inhibited various platelet functions, including aggregation, integrin activation, α-granule secretion, protein kinase C (PKC) activation, and platelet spreading. Mechanistic studies demonstrated that DMPC sHDL's antiplatelet effects are not entirely dependent on cholesterol efflux, despite effectively reducing total platelet cholesterol. Furthermore, sHDL's activity was found to be independent of scavenger receptor BI (SR-BI). Notably, inhibition of the CD36 receptor markedly attenuated sHDL's antiplatelet activity and uptake, suggesting a novel mechanism distinct from that of native HDL. In summary, DMPC sHDL modulates platelet function through a synergistic action between protein and phospholipid components, primarily via CD36 receptor engagement. These insights pave the way for novel antiplatelet therapies utilizing sHDL's distinct properties.
Collapse
Affiliation(s)
- Antonela Rodriguez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - May Thazin Phoo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, Michigan 48109, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, Michigan 48109, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Yu M, Vaishnav S, Dorsey KH, Phoo MT, Rodriguez A, Schwendeman A. Comparison of cholesterol transport capacity of peptide- and polymer-based lipid Nanodiscs. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 63:102795. [PMID: 39557183 DOI: 10.1016/j.nano.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Apolipoprotein-based, synthetic high-density lipoprotein (sHDL) nanodiscs have been extensively studied as a potential therapeutic agent for cardiovascular disease due to their ability to promote reverse cholesterol transport. Recently, polymer-based nanodiscs have been made possible with the development of novel polymeric materials such as styrene-maleic anhydride copolymer (SMA). While the polymer-based nanodiscs resemble the discoidal structure of sHDLs, their functional similarity with sHDL has not been investigated. In the present study, we compared the SMA-based and peptide-based sHDL nanodiscs focusing on their cholesterol mobilization effects. Results showed that SMA-based nanoparticles presented similar particle size and in vitro cholesterol efflux effect to those of sHDL nanodiscs. However, SMA nanodiscs induced less cholesterol mobilization in vivo, possibly due to insufficient cholesterol esterification by lecithin:cholesterol acyltransferase.
Collapse
Affiliation(s)
- Minzhi Yu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saatvik Vaishnav
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen Hong Dorsey
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - May Thazin Phoo
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Antonela Rodriguez
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Mocciaro G, Allison M, Jenkins B, Azzu V, Huang-Doran I, Herrera-Marcos LV, Hall Z, Murgia A, Susan D, Frontini M, Vidal-Puig A, Koulman A, Griffin JL, Vacca M. Non-alcoholic fatty liver disease is characterised by a reduced polyunsaturated fatty acid transport via free fatty acids and high-density lipoproteins (HDL). Mol Metab 2023; 73:101728. [PMID: 37084865 PMCID: PMC10176260 DOI: 10.1016/j.molmet.2023.101728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/25/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) develops due to impaired hepatic lipid fluxes and is a risk factor for chronic liver disease and atherosclerosis. Lipidomic studies consistently reported characteristic hepatic/VLDL "lipid signatures" in NAFLD; whole plasma traits are more debated. Surprisingly, the HDL lipid composition by mass spectrometry has not been characterised across the NAFLD spectrum, despite HDL being a possible source of hepatic lipids delivered from peripheral tissues alongside free fatty acids (FFA). This study characterises the HDL lipidomic signature in NAFLD, and its correlation with metabolic and liver disease markers. METHODS We used liquid chromatography-mass spectrometry to determine the whole serum and HDL lipidomic profile in 89 biopsy-proven NAFLD patients and 20 sex and age-matched controls. RESULTS In the whole serum of NAFLD versus controls, we report a depletion in polyunsaturated (PUFA) phospholipids (PL) and FFA; with PUFA PL being also lower in HDL, and negatively correlated with BMI, insulin resistance, triglycerides, and hepatocyte ballooning. In the HDL of the NAFLD group we also describe higher saturated ceramides, which positively correlate with insulin resistance and transaminases. CONCLUSION NAFLD features lower serum lipid species containing polyunsaturated fatty acids; the most affected lipid fractions are FFA and (HDL) phospholipids; our data suggest a possible defect in the transfer of PUFA from peripheral tissues to the liver in NAFLD. Mechanistic studies are required to explore the biological implications of our findings addressing if HDL composition can influence liver metabolism and damage, thus contributing to NAFLD pathophysiology.
Collapse
Affiliation(s)
- Gabriele Mocciaro
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; Roger Williams Institute of Hepatology, Foundation for Liver Research, London, SE5 9NT, United Kingdom
| | - Michael Allison
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Benjamin Jenkins
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Vian Azzu
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom; Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Isabel Huang-Doran
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Luis Vicente Herrera-Marcos
- Department of Biochemistry and Molecular and Cellular Biology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
| | - Zoe Hall
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Antonio Murgia
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom
| | - Davies Susan
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Mattia Frontini
- Faculty of Health and Life Sciences, Clinical and Biomedical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Antonio Vidal-Puig
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Albert Koulman
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom.
| | - Julian L Griffin
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; The Rowett Institute, Foresterhill Campus, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom.
| | - Michele Vacca
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; Roger Williams Institute of Hepatology, Foundation for Liver Research, London, SE5 9NT, United Kingdom; Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom; Aldo Moro University of Bari, Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", Bari, 70124, Italy.
| |
Collapse
|