1
|
Jung C, Fichter M, Oberländer J, Schunke J, Bolduan V, Schneider P, Kang J, Koynov K, Mailänder V, Landfester K. Nanobodies Outperform Antibodies - Rapid Functionalization with Equal In Vivo Targeting Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412563. [PMID: 39468885 DOI: 10.1002/adma.202412563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Highly specific targeting of dendritic cells in vivo is crucial for the development of effective tumor nanovaccines. This group recently presented an antibody-functionalized nanocarrier system able to maintain its targeting properties when transferred from in vitro to in vivo studies. However, producing this system requires long synthesis times and involves high expenses due to the involved site-specific enzymatic multi-step modification procedure of the antibody. Consequently, improving the previously proposed system is necessary in order to accelerate the development. Here, a novel system utilizing nanobodies for the targeting of dendritic cells is presented. A C-terminal cysteine tag facilitates an easy attachment of the nanobody to the nanocarrier via a thiol-maleimide conjugation technique. This reduces the functionalization time from several days to mere hours. Using in vitro and in vivo assays, it is shown that the optimized system possesses equal targeting properties as the antibody-based system. As a result, nanobodies and the coupling chemistry are found to be a superior strategy for the in vivo targeting of dendritic cells when compared to antibodies, due to their rapid attachment to nanocarriers and equal targeting specificity. This would replace antibodies as the current "gold standard" of targeting moieties.
Collapse
Affiliation(s)
- Carina Jung
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Michael Fichter
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Jennifer Oberländer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Jinhong Kang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
2
|
Tang Y, Li L. The Application of Nanovaccines in Autoimmune Diseases. Int J Nanomedicine 2024; 19:367-388. [PMID: 38229706 PMCID: PMC10790641 DOI: 10.2147/ijn.s440612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Autoimmune diseases are diseases caused by the body's chronic immune responses to self-antigens and attacks on the host's own cells, tissues and organs. The dysfunction of innate immunity and adaptive immunity leads to the destruction of autoimmune tolerance, which is the most basic factor leading to pathogenesis. The optimal strategy for autoimmune diseases is to modify the host immune system to restore tolerance. The ideal effect of therapeutic autoimmune diseases is to eliminate the autoantigen-specific spontaneous immune response without interfering with the immune response against other antigens. Therapeutic nanovaccines that produce immune tolerance conform to this principle. Nanomaterials provide a platform for antigen loading and modification due to their unique physical and chemical properties. Nanovaccines based on nanomaterial technology can simultaneously enable antigens and adjuvants to be absorbed by immune cells and induce rapid and durable immunity. Nanovaccines have the advantages of being able to be designed and loaded and of better protecting antigens from premature degradation. Nanovaccines also have the ability to target specific tissues or cells through optimized design. We review the latest research progress of nanovaccines for autoimmune diseases and the design strategies of nanovaccines to promote the development of more effective nanovaccines for autoimmune diseases.
Collapse
Affiliation(s)
- Yuhong Tang
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| |
Collapse
|