1
|
Zhao W, Ji L, Li J, Liu D, Yan C, Zhang C, Wang X, Liu Y, Zheng S. Mesaconate from Bacillus subtilis R0179 Supernatant Attenuates Periodontitis by Inhibiting Porphyromonas gingivalis in Mice. J Periodontal Res 2024. [PMID: 39560450 DOI: 10.1111/jre.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
AIMS This research sought to assess the efficacy of Bacillus subtilis (B. subtilis) R0179 and explore potential metabolites in mitigating experimental periodontitis in mice induced by Porphyromonas gingivalis (P. gingivalis) ATCC 33277. METHODS B. subtilis R0179 was administered to 8-week-old male C57BL/6J mice with periodontitis. Oral load of P. gingivalis ATCC 33277 and periodontal tissue loss were quantified. The cell-free supernatant (CFS) was separated to assess its anti-P. gingivalis effect. Proteomic and metabolomic analyses identified potential antibacterial components in the CFS, further evaluated for anti-P. gingivalis effects. RESULTS B. subtilis R0179 significantly reduced P. gingivalis ATCC 33277 levels and mitigated periodontal tissue loss in mice. The CFS, rather than inactivated B. subtilis R0179 cells, exhibited antibacterial activity. Proteomic and metabolomic analyses identified mesaconate and citraconate as key antibacterial agents. Disk diffusion assays confirmed the efficacy of mesaconate against P. gingivalis, while citraconate had no effect. Mesaconate showed a dose-dependent reduction in P. gingivalis ATCC 33277 population and periodontal tissue loss in mice. CONCLUSION These findings highlight B. subtilis R0179 and its metabolite mesaconate as promising candidates for therapeutic development against periodontitis by inhibiting P. gingivalis ATCC 33277 effectively.
Collapse
Affiliation(s)
- Weiwei Zhao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Lingli Ji
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Jie Li
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Dandan Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Changqing Yan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Chenying Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| |
Collapse
|
2
|
Zhu X, Sculean A, Eick S. In-vitro effects of different hyaluronic acids on periodontal biofilm-immune cell interaction. Front Cell Infect Microbiol 2024; 14:1414861. [PMID: 38938883 PMCID: PMC11208323 DOI: 10.3389/fcimb.2024.1414861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Recent studies have demonstrated a positive role of hyaluronic acid (HA) on periodontal clinical outcomes. This in-vitro study aimed to investigate the impact of four different HAs on interactions between periodontal biofilm and immune cells. Methods The four HAs included: high-molecular-weight HA (HHA, non-cross-linked), low-molecular-weight HA (LHA), oligomers HA (OHA), and cross-linked high-molecular-weight HA (CHA). Serial experiments were conducted to verify the influence of HAs on: (i) 12-species periodontal biofilm (formation and pre-existing); (ii) expression of inflammatory cytokines and HA receptors in monocytic (MONO-MAC-6) cells and periodontal ligament fibroblasts (PDLF) with or without exposure to periodontal biofilms; (iii) generation of reactive oxygen species (ROS) in MONO-MAC-6 cells and PDLF with presence of biofilm and HA. Results The results indicated that HHA and CHA reduced the bacterial counts in a newly formed (4-h) biofilm and in a pre-existing five-day-old biofilm. Without biofilm challenge, OHA triggered inflammatory reaction by increasing IL-1β and IL-10 levels in MONO-MAC cells and IL-8 in PDLF in a time-dependent manner, whereas CHA suppressed this response by inhibiting the expression of IL-10 in MONO-MAC cells and IL-8 in PDLF. Under biofilm challenge, HA decreased the expression of IL-1β (most decreasing HHA) and increased IL-10 levels in MONO-MAC-6 cells in a molecular weight dependent manner (most increasing CHA). The interaction between HA and both cells may occur via ICAM-1 receptor. Biofilm stimulus increased ROS levels in MONO-MAC-6 cells and PDLF, but only HHA slightly suppressed the high generation of ROS induced by biofilm stimulation in both cells. Conclusion Overall, these results indicate that OHA induces inflammation, while HHA and CHA exhibit anti-biofilm, primarily anti-inflammatory, and antioxidant properties in the periodontal environment.
Collapse
Affiliation(s)
- Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Li Q, Wang D, Xiao C, Wang H, Dong S. Advances in Hydrogels for Periodontitis Treatment. ACS Biomater Sci Eng 2024; 10:2742-2761. [PMID: 38639082 DOI: 10.1021/acsbiomaterials.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Periodontitis is a common condition characterized by a bacterial infection and the disruption of the body's immune-inflammatory response, which causes damage to the teeth and supporting tissues and eventually results in tooth loss. Current therapy involves the systemic and local administration of antibiotics. However, the existing treatments cannot exert effective, sustained release and maintain an effective therapeutic concentration of the drug at the lesion site. Hydrogels are used to treat periodontitis due to their low cytotoxicity, exceptional water retention capability, and controlled drug release profile. Hydrogels can imitate the extracellular matrix of periodontal cells while offering suitable sites to load antibiotics. This article reviews the utilization of hydrogels for periodontitis therapy based on the pathogenesis and clinical manifestations of the disease. Additionally, the latest therapeutic strategies for smart hydrogels and the main techniques for hydrogel preparation have been discussed. The information will aid in designing and preparing future hydrogels for periodontitis treatment.
Collapse
Affiliation(s)
- Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Ye W, Wu J, Jiang Q, Su Z, Liao H, Liu Z, Tao R, Yong X. Antibacterial activity of corydalis saxicola bunting total alkaloids against Porphyromonas gingivalis in vitro. Future Microbiol 2024; 19:595-606. [PMID: 38629885 PMCID: PMC11229583 DOI: 10.2217/fmb-2023-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: To investigate the antibacterial effects of Corydalis Saxicola bunting total alkaloid (CSBTA) on Porphyromonas gingivalis. Methods: SEM, chemical staining, RT-qPCR and ELISA were used to detect effects of CSBTA on P. gingivalis. Results: CSBTA treatment caused shrinkage and rupture of P. gingivalis morphology, decreased biofilm density and live bacteria in biofilm, as well as reduced mRNA expression of virulence genes hagA, hagB, kgp, rgpA and rgpB of P. gingivalis. Furthermore, NOK cells induced by CSBTA-treated P. gingivalis exhibited lower IL-6 and TNF-α expression levels. Conclusion: CSBTA is able to kill free P. gingivalis, disrupt the biofilm and weaken the pathogenicity of P. gingivalis. It has the potential to be developed as a drug against P. gingivalis infection.
Collapse
Affiliation(s)
- Wenli Ye
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Jiaxuan Wu
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Qiaozhi Jiang
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Haiqing Liao
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Zhenmin Liu
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Renchuan Tao
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Xiangzhi Yong
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| |
Collapse
|
5
|
Alshehri FA, Alharbi MS. The Effect of Adjunctive Use of Hyaluronic Acid on Prevalence of Porphyromonas gingivalis in Subgingival Biofilm in Patients with Chronic Periodontitis: A Systematic Review. Pharmaceutics 2023; 15:1883. [PMID: 37514069 PMCID: PMC10385933 DOI: 10.3390/pharmaceutics15071883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative anaerobic bacterium that plays an important role in the development and progression of periodontitis. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that has previously demonstrated antibacterial potential in vitro against multiple bacterial species, including P. gingivalis. The purpose of this systematic review is to evaluate the effectiveness of HA as an adjunctive topical antibacterial agent to non-surgical mechanical therapy of periodontitis in reducing the prevalence of P. gingivalis in subgingival biofilms. Five clinical studies were identified that satisfied the eligibility criteria. Only three trials were suitable for the meta-analysis as they provided data at three and six months. Data on the prevalence of P. gingivalis in each study were collected. The odds ratio (OR) for measuring the effect size with a 95% confidence interval (CI) was applied to the available data. The results did not favor the use of HA during non-surgical mechanical therapy to reduce the prevalence of P. gingivalis in subgingival biofilm (odd ratio = 0.95 and 1.11 at three and six months, consecutively). Within their limitations, the current data do not indicate an advantage for using HA during mechanical periodontal therapy to reduce the prevalence of P. gingivalis.
Collapse
Affiliation(s)
- Fahad A Alshehri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 12372, Saudi Arabia
| | - Meshal S Alharbi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 12372, Saudi Arabia
- Qassim Health Cluster, Ministry of Health, Buraydah 52367, Saudi Arabia
| |
Collapse
|
6
|
Jabbari F, Babaeipour V, Saharkhiz S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. Int J Biol Macromol 2023; 240:124484. [PMID: 37068534 DOI: 10.1016/j.ijbiomac.2023.124484] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Hyaluronic acid (HA), an anionic and nonsulfated glycosaminoglycan, is the main structural component of various tissues and plays an important role in various biological processes. Given the promising properties of HA, such as high cellular compatibility, moisture retention, antiaging, proper interaction with cells, and CD44 targeting, HA can be widely used extensively in drug delivery, tissue engineering, wound healing, and cancer therapy. HA can obtain from animal tissues and microbial fermentation, but its applications depend on its molecular weight. Microbial fermentation is a common method for HA production on an industrial scale and S. zooepidemicus is the most frequently used strain in HA production. Culture conditions including pH, temperature, agitation rate, aeration speed, shear stress, dissolved oxygen, and bioreactor type significantly affect HA biosynthesis properties. In this review all the HA production methods and purification techniques to improve its physicochemical and biological properties for various biomedical applications are discussed in details. In addition, we showed that how HA molecular weight can significantly affect its properties and applications.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran.
| | - Saeed Saharkhiz
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran
| |
Collapse
|
7
|
Alharbi MS, Alshehri FA, Alobaidi AS, Alrowis R, Alshibani N, Niazy AA. High molecular weight hyaluronic acid reduces the growth and biofilm formation of the oral pathogen Porphyromonas gingivalis. Saudi Dent J 2023; 35:141-146. [PMID: 36942200 PMCID: PMC10024125 DOI: 10.1016/j.sdentj.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Background Porphyromonas gingivalis (P. gingivalis) is viewed as a keystone microorganism in the pathogenesis of periodontal and peri-implant diseases. Hyaluronic acid (HA) is believed to exert antimicrobial activity. The aim of this study is to assess the in-vitro growth and biofilm formation of P. gingivalis under HA and compare the effect of HA to that of azithromycin (AZM) and chlorhexidine (CHX). Materials and methods In each material, the minimum inhibitory concentration (MIC), 50% MIC, 25% MIC, and 12.5% MIC were tested. The growth of P. gingivalis was evaluated by absorbance spectrophotometry after 48 h. A biofilm inhibition assay was performed on a 72-hour culture by washing planktonic bacterial cells, fixing and staining adherent cells, and measuring the variation in stain concentrations relative to the untreated control using absorbance spectrophotometry. Results The results show that the overall growth of P. gingivalis after 48 h was 0.048 ± 0.030, 0.008 ± 0.013, and 0.073 ± 0.071 under HA, AZM, and CHX, respectively, while the untreated control reached 0.236 ± 0.039. HA was also able to significantly reduce the biofilm formation of P. gingivalis by 64.30 % ± 22.39, while AZM and CHX reduced biofilm formation by 91.16 %±12.58 and 88.35 %±17.11, respectively. Conclusions High molecular-weight HA significantly inhibited the growth of P. gingivalis. The overall effect of HA on the growth of P. gingivalis was similar to that of CHX but less than that of AZM. HA was also able to significantly reduce the biofilm formation of P. gingivalis. However, the ability of HA to prevent the biofilm formation of P. gingivalis was generally less than that of both AZM and CHX.
Collapse
Affiliation(s)
- Meshal S. Alharbi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, 12372 Riyadh, Saudi Arabia
- Qassim Health Cluster, Ministry of Health, 52367 Buraydah, Saudi Arabia
| | - Fahad A. Alshehri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, 12372 Riyadh, Saudi Arabia
- Corresponding author.
| | - Ahmed S. Alobaidi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 4255, Riyadh 11451, Saudi Arabia
| | - Raed Alrowis
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, 12372 Riyadh, Saudi Arabia
| | - Nouf Alshibani
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, 12372 Riyadh, Saudi Arabia
| | - Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, 12372 Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Yang Y, Liu M, Yang Z, Lin WS, Chen L, Tan J. Enhanced Antibacterial Effect on Zirconia Implant Abutment by Silver Linear-Beam Ion Implantation. J Funct Biomater 2023; 14:jfb14010046. [PMID: 36662093 PMCID: PMC9865340 DOI: 10.3390/jfb14010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Peri-implant lesions, such as peri-implant mucositis and peri-implantitis, are bacterial-derived diseases that happen around dental implants, compromising the long-term stability and esthetics of implant restoration. Here, we report a surface-modification method on zirconia implant abutment using silver linear-beam ion implantation to reduce the bacterial growth around the implant site, thereby decreasing the prevalence of peri-implant lesions. The surface characteristics of zirconia after ion implantation was evaluated using energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and a contact-angle device. The antibacterial properties of implanted zirconia were evaluated using Streptococcus mutans and Porphyromonas gingivalis. The biocompatibility of the material surface was evaluated using human gingival fibroblasts. Our study shows that the zirconia surface was successfully modified with silver nanoparticles by using the ion-implantation method. The surface modification remained stable, and the silver-ion elution was below 1 ppm after one-month of storage. The modified surface can effectively eliminate bacterial growth, while the normal gingiva's cell growth is not interfered with. The results of the study demonstrate that a silver-ion-implanted zirconia surface possesses good antibacterial properties and good biocompatibility. The surface modification using silver-ion implantation is a promising method for future usage.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prosthodontics, Peking University School, Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Mingyue Liu
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- First Clinical Division, Peking University School, Hospital of Stomatology, Beijing 100081, China
| | - Zhen Yang
- Department of Prosthodontics, Peking University School, Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Wei-Shao Lin
- Department of Prosthodontics, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Li Chen
- Department of Prosthodontics, Peking University School, Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Correspondence:
| | - Jianguo Tan
- Department of Prosthodontics, Peking University School, Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|