1
|
Millot F, Ampatzidou M, Moulik NR, Tewari S, Elhaddad A, Hammad M, Pichler H, Lion T, Tragiannidis A, Shima H, An W, Yang W, Karow A, Farah R, Luesink M, Dworzak M, Sembill S, De Moerloose B, Sedlacek P, Schultz KR, Kalwak K, Versluys B, Athale U, Hijiya N, Metzler M, Suttorp M. Management of children and adolescents with chronic myeloid leukemia in chronic phase: International pediatric chronic myeloid leukemia expert panel recommendations. Leukemia 2025; 39:779-791. [PMID: 40044960 DOI: 10.1038/s41375-025-02543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 04/09/2025]
Abstract
The treatment strategy for children and adolescents with chronic myeloid leukemia in the chronic phase (CML-CP) has evolved from allogeneic hematopoietic stem cell transplantation (HSCT) to tyrosine kinase inhibitors (TKIs). With the advent of next-generation TKIs and new targeted therapies in the CML field, an international pediatric CML expert panel provides recommendations based on the medical literature (including previous pediatric guidelines), national standards, and treatment principles used in adults with CML-CP. Recommendations include diagnosis of the disease and details on managing the initial steps of care of children and adolescents with newly diagnosed CML-CP, including complications such as leukostasis. The treatment recommendations are based on the initiation of therapy with a first- or second-generation TKI according to the allocated European Treatment and Outcome Study (EUTOS) long-term survival score risk group of the patient. The subsequent steps are based on the results of recommended monitoring which can justify a switch to another TKI or a drug in development if there is resistance or toxicity. The panel also provides recommendations regarding the discontinuation criteria for TKIs in children and adolescents in sustained deep molecular response. Allogeneic HSCT is not recommended as the first-line of treatment for children with CML-CP but is to be considered in case of progression to the advanced phase or failure of several lines of treatment. The present treatment and management recommendations are intended to provide advice to clinicians in view of optimizing the care and the outcome of children and adolescents with CML-CP.
Collapse
Affiliation(s)
- Frédéric Millot
- Inserm CIC 1402, University Hospital of Poitiers, Poitiers, France.
| | - Mirella Ampatzidou
- Department of Pediatric Hematology Oncology (T.A.O.), Aghia Sophia Children's Hospital, Athens, Greece
| | - Nirmalya Roy Moulik
- Department of Pediatric Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Sanjay Tewari
- Department of Paediatric Oncology/Haematology, Royal Marsden NHS Foundation Trust Sutton, Sutton, UK
| | - Alaa Elhaddad
- Department of Pediatric Oncology, Children's Cancer Hospital, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mahmoud Hammad
- Department of Pediatric Oncology, Children's Cancer Hospital, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Herbert Pichler
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Thomas Lion
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Haruko Shima
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Wenbin An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Axel Karow
- Division of Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital, Erlangen, Germany
| | - Roula Farah
- Department of Pediatrics, Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Maaike Luesink
- Department of Pediatric Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Michael Dworzak
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Stephanie Sembill
- Division of Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital, Erlangen, Germany
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Petr Sedlacek
- Department of Pediatric Hematology-Oncology, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Kirk R Schultz
- Division of Hematology/Oncology/BMT, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Birgitta Versluys
- Department of Pediatric Blood and Marrow Transplantation, Princess Máxima Center, Utrecht, The Netherlands
| | - Uma Athale
- Division of Haematology-Oncology, Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Nobuko Hijiya
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Markus Metzler
- Division of Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital, Erlangen, Germany
| | - Meinolf Suttorp
- Department of Pediatric Hematology and Oncology, Medical Faculty, Technical University, Dresden, Germany
| |
Collapse
|
2
|
Maroselli P, Fanciullino R, Colle J, Farnault L, Roche P, Venton G, Costello R, Ciccolini J. Body mass index affects imatinib exposure: Real-world evidence from TDM with adaptive dosing. Fundam Clin Pharmacol 2025; 39:e13049. [PMID: 39749370 PMCID: PMC11696203 DOI: 10.1111/fcp.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Imatinib is the treatment of elderly or frail patients with chronic myeloid leukemia (CML). Trough levels of around 1000 ng/ml are considered as the target exposure. OBJECTIVES We searched for baseline parameters associated with imatinib pharmacokinetics, and studied the clinical impact of subsequent adaptive dosing. METHODS We present data from 60 adult CML patients upon imatinib with therapeutic drug monitoring (TDM) and adaptive dosing. RESULTS Mean trough levels after treatment initiation were 994.2 ± 560.6 ng/ml with 56% inter-patient variability). Only 29% of patients were in the therapeutic range. Body weight, height, body surface area, body mass index (BMI), and age were associated with imatinib plasma levels on univariate analysis. Age and BMI remained the only parameters associated with imatinib trough levels on multivariate analysis. As severe toxicities have been previously reported in patients with low BMI treated with standard imatinib, we evaluated the extent to which low BMI may lead to plasma overexposure. We found a statistically significant difference in trough imatinib levels in patients with BMI < 18.5 kg/m2, with exposure +61.5% higher than in patients with 18.5 < BMI ≤ 24.9 and +76.3% higher than in patients with BMI ≥ 25. After TDM with adaptive dosing, a statistically significant difference in dosing between patients was observed, with doses ranging from 200 to 700 mg. No difference in toxicity or efficacy was observed regardless of BMI after adaptive dosing. CONCLUSION Our data suggest that low BMI has a significant impact on imatinib exposure but that pharmacokinetically-guided dosing limits its clinical impact in patients.
Collapse
Affiliation(s)
- Paul Maroselli
- PRISM Biogénopôle La Timone University Hospital of Marseille, APHMMarseilleFrance
| | - Raphaelle Fanciullino
- COMPO Centre de Recherche en Cancérologie de Marseille Inserm U1068MarseilleFrance
- Pharmacy UnitLa Conception University Hospital of Marseille APHMMarseilleFrance
| | - Julien Colle
- Hematology DeptLa Conception University Hospital of Marseille APHMMarseilleFrance
| | - Laure Farnault
- Hematology DeptLa Conception University Hospital of Marseille APHMMarseilleFrance
| | - Pauline Roche
- Pharmacy UnitLa Conception University Hospital of Marseille APHMMarseilleFrance
| | - Geoffroy Venton
- Hematology DeptLa Conception University Hospital of Marseille APHMMarseilleFrance
| | - Régis Costello
- Hematology DeptLa Conception University Hospital of Marseille APHMMarseilleFrance
| | - Joseph Ciccolini
- PRISM Biogénopôle La Timone University Hospital of Marseille, APHMMarseilleFrance
- COMPO Centre de Recherche en Cancérologie de Marseille Inserm U1068MarseilleFrance
| |
Collapse
|
3
|
Mukherjee S, Joshi V, Reddy KP, Singh N, Das P, Datta P. Biopharmaceutical and pharmacokinetic attributes to drive nanoformulations of small molecule tyrosine kinase inhibitors. Asian J Pharm Sci 2024; 19:100980. [PMID: 39640056 PMCID: PMC11617995 DOI: 10.1016/j.ajps.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Buoyed by the discovery of small-molecule tyrosine kinase inhibitors (smTKIs), significant impact has been made in cancer chemotherapeutics. However, some of these agents still encounter off-target toxicities and suboptimal efficacies due to their inferior biopharmaceutical and/or pharmacokinetic properties. Almost all of these molecules exhibit significant inter- and intra-patient variations in plasma concentration-time profiles. Thus, therapeutic drug monitoring, dose adjustments and precision medicine are being contemplated by clinicians. Complex formulations or nanoformulation-based drug delivery systems offer promising approaches to provide drug encapsulation or spatiotemporal control over the release, overcoming the biopharmaceutical and pharmacokinetic limitations and improving the therapeutic outcomes. In this context, the present review comprehensively tabulates and critically analyzes all the relevant properties (T1/2, solubility, pKa, therapeutic index, IC50, metabolism etc.) of the approved smTKIs. A detailed appraisal is conducted on the advancements made in complex formulations of smTKIs, with a focus on strategies to enhance their pharmacokinetic profile, tumor targeting ability, and therapeutic efficacy. Various nanocarrier platforms, have been discussed, highlighting their unique features and potential applications in cancer therapy. Nanoformulations have been shown to improve area under the curve and peak plasma concentration, and reduce dosing frequency for several smTKIs in animal models. It is inferred that extensive efforts will be made in developing complex formulations of smTKIs in near future. There, the review concludes with key recommendations for the developing of smTKIs to facilitate early clinical translation.
Collapse
Affiliation(s)
| | | | - Kolimi Prashanth Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Priyanka Das
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| |
Collapse
|
4
|
Géraud A, Combarel D, Funck-Brentano C, Beaulieu Q, Zahr N, Broutin S, Spano JP, Massard C, Besse B, Gougis P. A Score to Predict the Clinical Usefulness of Therapeutic Drug Monitoring: Application to Oral Molecular Targeted Therapies in Cancer. Clin Pharmacol Ther 2024; 116:678-689. [PMID: 38389482 DOI: 10.1002/cpt.3193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Therapeutic drug monitoring (TDM) involves measuring and interpreting drug concentrations in biological fluids to adjust drug dosages. In onco-hematology, TDM guidelines for oral molecular targeted therapies (oMTTs) are varied. This study evaluates a quantitative approach with a score to predict the clinical usefulness of TDM for oMTTs. We identified key parameters for an oMTT's suitability for TDM from standard TDM recommendations. We gathered oMTT pharmacological data, which covered exposure variability (considering pharmacokinetic (PK) impact of food and proton pump inhibitors), technical intricacy (PK linearity and active metabolites), efficacy (exposure-response relationship), and safety (maximum tolerated dose, and exposure-safety relationship). To assess the validity and the relevance of the score and define relevant thresholds, we evaluated molecules with prospective validation or strong recommendations for TDM, both in oncology and in other fields. By September 1, 2021, the US Food and Drug Administration (FDA) approved 67 oMTTs for onco-hematological indications. Scores ranged from 15 (acalabrutinib) to 80 (sunitinib) with an average of 48.3 and a standard deviation of 15.6. Top scorers included sunitinib, sorafenib, cabozantinib, nilotinib, and abemaciclib. Based on scores, drugs were categorized into low (< 40), intermediate (≥ 40 and < 60), and high (≥ 60) relevance for TDM. Notably, negative controls generally scored around or under 40, whereas positive controls had a high score across different indications. In this work, we propose a quantitative and reproducible score to compare the potential usefulness of TDM for oMTTs. Future guidelines should prioritize the TDM for molecules with the highest score.
Collapse
Affiliation(s)
- Arthur Géraud
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
- Early Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
- Paris-Saclay University, Orsay, France
| | - David Combarel
- Pharmacology Department, Gustave Roussy, Villejuif, France
- Faculty of Pharmacy, Paris-Saclay University, Chatenay-Malabry, France
| | - Christian Funck-Brentano
- Department of Pharmacology and Clinical Investigation Center (CIC-1901), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université Médecine, Paris, France
| | - Quentin Beaulieu
- Department of Pharmacology and Clinical Investigation Center (CIC-1901), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université Médecine, Paris, France
| | - Noël Zahr
- Department of Pharmacology and Clinical Investigation Center (CIC-1901), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université Médecine, Paris, France
| | - Sophie Broutin
- Pharmacology Department, Gustave Roussy, Villejuif, France
| | - Jean-Philippe Spano
- Oncology Department, APHP-Sorbonne Université, Cancer Institute (IUC), Paris, France
- INSERM, UMRS 1136, Paris, France
| | - Christophe Massard
- Early Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
- Centre Eugène Marquis, Rennes, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
- Paris-Saclay University, Orsay, France
| | - Paul Gougis
- Department of Pharmacology and Clinical Investigation Center (CIC-1901), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université Médecine, Paris, France
- Oncology Department, APHP-Sorbonne Université, Cancer Institute (IUC), Paris, France
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Curie Institute, Université Paris, Paris, France
| |
Collapse
|
5
|
Ferrer F, Tetu P, Dousset L, Lebbe C, Ciccolini J, Combarel D, Meyer N, Paci A, Bouchet S. Tyrosine kinase inhibitors in cancers: Treatment optimization - Part II. Crit Rev Oncol Hematol 2024; 200:104385. [PMID: 38810843 DOI: 10.1016/j.critrevonc.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Real-life populations are more heterogeneous than those included in prospective clinical studies. In cancer patients, comorbidities and co-medications favor the appearance of severe adverse effects which can significantly impact quality of life and treatment effectiveness. Most of tyrosine kinase inhibitors (TKI) have been developed with flat oral dosing exposing patients to the risk of poor adherence due to side effects. Additionally, genetic or physiological factors, differences in diet, and drug-drug interactions can lead to inter-individual variability affecting treatment outcomes and increasing the risk of adverse events. Knowledge of the different factors of variability allows individualized patient management. This review examines the effects of adherence, food intake, and pharmaceutical form on the pharmacokinetics of oral TKI, as well as evaluating pharmacokinetics considerations improving TKI management. Concentration-effectiveness and concentration-toxicity data are presented for the selected TKI, and a simple therapeutic drug monitoring schema is outlined to help individualize dosing of oral TKI.
Collapse
Affiliation(s)
- Florent Ferrer
- Department of Pharmacology, Clermont-Ferrand University Hospital, Clermont-Ferrand, France; SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France
| | - Pauline Tetu
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France
| | - Léa Dousset
- Dermatology Department, Bordeaux University Hospital, Bordeaux, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France
| | - Céleste Lebbe
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France
| | - Joseph Ciccolini
- SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France
| | - David Combarel
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, Châtenay-Malabry 92 296, France
| | - Nicolas Meyer
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Université Paul Sabatier-Toulouse III, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche, Toulouse 1037-CRCT, France
| | - Angelo Paci
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, Châtenay-Malabry 92 296, France
| | - Stéphane Bouchet
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Département de Pharmacologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.
| |
Collapse
|
6
|
Zhang JJ, Qian YL, Wu ZY, Li Y, Guan YJ, Sun C, Fu KL, Mei TL, Goyal G, Bernasconi P, Damiani D, Zhu JG. Comparative efficacy and safety of first-line tyrosine kinase inhibitors in chronic myeloid leukemia: a systematic review and network meta-analysis. Transl Cancer Res 2024; 13:3783-3797. [PMID: 39145083 PMCID: PMC11319984 DOI: 10.21037/tcr-24-747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
Background Tyrosine kinase inhibitors (TKIs) have become the preferred drugs for the treatment of chronic phase (CP) chronic myeloid leukemia (CML). This study aims to compare the safety and efficacy of different TKIs as first-line treatments for CML using network meta-analysis (NMA), providing a basis for the precise clinical use of TKIs. Methods A systematic search was conducted on PubMed, Cochrane Library, Embase, China National knowledge Infrastructure (CNKI), Wanfang, Chinese Science and Technology Periodical Databases (VIP), SinoMed and ClinicalTrials.gov to include RCTs that compared the different TKIs as first line treatment for CML. The search timeline was from inception to 21 July 2023. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the frequentist NMA methods, the efficacy and safety of different TKIs were compared, including the rates of major molecular response (MMR), complete cytogenetic response (CCyR), all grade adverse events, grade 3 or higher hematologic adverse events and liver toxicity. Results A total of 25 RCTs involving 6,823 patients with CML and 6 types of TKIs were included. In terms of efficacy, second-generation TKIs such as dasatinib, nilotinib, and radotinib showed certain advantages in improving patients' MMR and CCyR compared to imatinib. Additionally, imatinib 800 mg provided better MMRs and CCyRs than imatinib 400 mg. As far as safety was concerned, there was no significant difference in the incidence of all grade adverse events among the different TKIs. All TKIs can cause serious grade 3-4 hematologic adverse events, including anemia, thrombocytopenia, and neutropenia. Dasatinib more likely caused anemia, bosutinib thrombocytopenia, and imatinib neutropenia, whereas nilotinib and flumatinib might have better safety profiles in terms of severe hematologic adverse events. For liver toxicity, radotinib 400 mg and imatinib 800 mg, respectively, had the highest likelihood of ranking first in incidence rates of all grade ALT and AST elevation. Conclusions In CML, second-generation TKIs are more clinically effective than imatinib even if this last drug has a relatively better safety profile. Thus, as each second-generation TKI has a distinct clinical efficacy and safety, and is associated with different economic factors, its choice should be dictated by the specific patient clinical conditions (patient's specific disease characteristics, comorbid conditions, potential drug interactions, as well as their adherence). Nevertheless, due to the limited number of original research, additional high-quality studies are needed to achieve any firm conclusion on which second-generation TKI is the best choice for that peculiar patient.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Yu-Lan Qian
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zi-Yang Wu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Li
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Cui Sun
- Beijing Sentum Health Co., Ltd., Beijing, China
| | - Kai-Li Fu
- Beijing Sentum Health Co., Ltd., Beijing, China
| | | | - Gaurav Goyal
- Division of Hematology-Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, Department of Medical Area, University of Udine, Udine, Italy
| | - Jian-Guo Zhu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Bruzzoni-Giovanelli H, Zouali H, Sahbatou M, Maneglier B, Cayuela JM, Rebollo A, Marin GH, Geromin D, Tomczak C, Alberdi A, Deleuze JF, Rousselot P. Constitutional DNA Polymorphisms Associated with the Plasma Imatinib Concentration in Chronic Myeloid Leukemia Patients. Pharmaceutics 2024; 16:834. [PMID: 38931954 PMCID: PMC11207966 DOI: 10.3390/pharmaceutics16060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The tyrosine kinase Inhibitor (TKI) imatinib is approved for the treatment of the chronic phase of chronic myeloid leukemia (CP-CML). Pharmacokinetic studies have highlighted the importance of inter-patient variability on imatinib plasma trough concentrations (ima[C]min). In the OPTIM-imatinib trial, we demonstrated that therapeutic drug monitoring (TDM) is able to improve the molecular response of CP-CML patients treated with imatinib. Here, we analyzed the constitutional exomes and RNAseq data of these patients. We performed an association analysis between the constitutional genetic variants of the patients and their ima[C]min, measured after 12 weeks of treatment with 400 mg once daily. Using linear regression, we identified 50 SNPs that showed excess heterozygosity depending on the ima[C]min. Ten SNPs were from non-coding sequences, and among the 40 remaining, 30 (from 25 genes) could be split into two categories. The first group of 16 SNPs concerns genes encoding extracellular matrix, cell junction, and membrane proteins. Coincidentally, cell adhesion proteins were also identified by RNA-seq as being overexpressed in patients with high ima[C]min. The other group of 14 SNPs were from genes encoding proteins involved in transcription/translation. Although most of the SNPs are intronic variants (28), we also identified missense (3), synonymous (4), 5'/3' (2), splicing (1), and upstream (4) variants. A haplotype analysis of four genes showed a significant association with high ima[C]min. None of the SNPs were significantly associated with the response. In conclusion, we identified a number of ima[C]min-associated SNPs, most of which correspond to genes encoding proteins that could play a role in the diffusion and transit of imatinib through membranes or epithelial barriers.
Collapse
Affiliation(s)
| | - Habib Zouali
- Fondation Jean Dausset-Centre d’Étude du Polymorphisme Humain (CEPH), 27 Rue Juliette Dodu, 75010 Paris, France
| | - Mourad Sahbatou
- Fondation Jean Dausset-Centre d’Étude du Polymorphisme Humain (CEPH), 27 Rue Juliette Dodu, 75010 Paris, France
| | - Benjamin Maneglier
- Département de Pharmacologie, Centre Hospitalier de Versailles, 78150 Le Chesnay, France
| | - Jean-Michel Cayuela
- Département d’Hématologie et Biologie Moléculaire et EA3518, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - Angelita Rebollo
- UTCBS, INSERM U1267-CNRS UMR8258, Faculté de Pharmacie, Université de Paris, 4 Avenue de l’Observatoire, CEDEX 06, 75270 Paris, France
| | - Gustavo H. Marin
- CUFAR, Farmacologia Básica, CONICET—FCMLP, Universidad Nacional de La Plata, 60 & 120, La Plata 1900, Argentina
| | - Daniela Geromin
- Département d’Hématologie et Biologie Moléculaire et EA3518, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - Carole Tomczak
- Département d’Hématologie et Biologie Moléculaire et EA3518, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - Antonio Alberdi
- UMS Saint-Louis US53/UAR2030, Institut de Recherche Saint Louis, Plateforme Technologique Centre Hayem, Hôpital Saint-Louis, Université Paris Cite—INSERM—CNRS, 1 Av Claude Vellefaux, CEDEX 10, 75475 Paris, France;
| | - Jean-Francois Deleuze
- Fondation Jean Dausset-Centre d’Étude du Polymorphisme Humain (CEPH), 27 Rue Juliette Dodu, 75010 Paris, France
- Centre National de Recherche en Génomique Humaine, Institut François Jacob, CEA, Université Paris Saclay, CNRGH, 91190 Evry, France
| | - Philippe Rousselot
- Département d’Hématologie, Centre Hospitalier de Versailles, 78157 Le Chesnay, France
- UMR1184, Département IDMIT, Commissariat à L’énergie Atomique et aux Energies Alternatives, Université de Versailles Saint-Quentin-en-Yvelines Paris-Saclay, 92265 Fontenay-Aux-Roses, France
| |
Collapse
|
8
|
Buhl Rasmussen AS, Andersen CL, Weimann A, Yang T, Tron C, Gandemer V, Dalhoff K, Rank CU, Schmiegelow K. Therapeutic drug monitoring of imatinib - how far are we in the leukemia setting? Expert Rev Clin Pharmacol 2024; 17:225-234. [PMID: 38345044 DOI: 10.1080/17512433.2024.2312256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tyrosine kinase inhibitors (TKIs) have revolutionized survival rates of chronic myeloid leukemia (CML) and Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) and replaced hematopoietic stem cell transplantation (hSCT) as the key treatment option for these patients. More recently, the so-called Philadelphia chromosome-like (Ph-like) ALL has similarly benefitted from TKIs. However, many patients shift from the first generation TKI, imatinib, due to treatment-related toxicities or lack of treatment efficacy. A more personalized approach to TKI treatment could counteract these challenges and potentially be more cost-effective. Therapeutic drug monitoring (TDM) has led to higher response rates and less treatment-related toxicity in adult CML but is rarely used in ALL or in childhood CML. AREAS COVERED This review summarizes different antileukemic treatment indications for TKIs with focus on imatinib and its pharmacokinetic/-dynamic properties as well as opportunities and pitfalls of TDM for imatinib treatment in relation to pharmacogenetics and co-medication for pediatric and adult Ph+/Ph-like leukemias. EXPERT OPINION TDM of imatinib adds value to standard monitoring of ABL-class leukemia by uncovering non-adherence and potentially mitigating adverse effects. Clinically implementable pharmacokinetic/-dynamic models adjusted for relevant pharmacogenetics could improve individual dosing. Prospective trials of TDM-based treatments, including both children and adults, are needed.
Collapse
Affiliation(s)
- Anna Sofie Buhl Rasmussen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Allan Weimann
- Pediatric Oncology Research Laboratory, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tianwu Yang
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Camille Tron
- Department of Biological Pharmacology, Rennes University Hospital, Rennes, France
| | - Virginie Gandemer
- Department of Pediatric Hematology and Oncology, Rennes University Hospital, Rennes, France
| | - Kim Dalhoff
- Department of Clinical Pharmacology, Copenhagen University Hospital, Bispebjerg, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Utke Rank
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Jiang X, Qu A, Xu X, Kuang H, Liu L, Xu C. Ultrasensitive detection of imatinib in human serum using a gold-based paper sensor. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124001. [PMID: 38281369 DOI: 10.1016/j.jchromb.2024.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Imatinib is the tyrosine kinase inhibitor of choice for the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors. However, imatinib has drawbacks such as drug resistance and significant differences in pharmacokinetics within patients. Therefore, a colloidal gold-based immunochromatographic assay (CG-IA) was developed for measuring and monitoring imatinib in human serum. An imatinib derivative containing carboxyl groups was used for the synthesis of the immunogen, and 4-(4-methyl-1-piperazinylmethyl) benzoic acid was selected as the hapten for the heterologous coating antigen. Next, a highly sensitive and specific monoclonal antibody (mAb), 2F7 was screened for the construction of a CG-IA, with an IC50 value of 0.091 ng/mL. For the qualification of imatinib in human serum, the visual limit of detection (vLOD) and cut-off values of the CG-IA were 2 and 20 ng/mL, respectively. For quantitative detection, the calculated LOD value of the CG-IA was 0.068 ng/mL, with a linearity range of 1.004 and 23.087 ng/mL. The recovery rate of spiked serum samples was between 88.24 % and 104.75 %. In addition, the concentration of imatinib in the serum samples from 10 patients was detected by CG-IA and revealed a good correlation with those from LC-MS/MS. These results indicated that the developed gold-based paper sensor could become an effective tool for the rapid monitoring of imatinib in human serum samples.
Collapse
Affiliation(s)
- Xiaoqian Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Aihua Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|